
Quantile Factor Models∗

Liang Chen1, Juan J. Dolado2, and Jesús Gonzalo3
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Abstract

In this paper we introduce a novel concept: Quantile Factor Models (QFM), where a

few unobserved common factors may affect all parts of the distributions of many observed

variables in a panel dataset of dimension N × T . When the factors affecting the quantiles

also affect the means of the observed variables, a simple two-step procedure is proposed

to estimate the common factors and the quantile factor loadings. Conditions on N and

T ensuring uniform consistency and weak convergence of the entire quantile factor loadings

processes differ from standard conditions in factor-augmented regressions with smooth object

functions. Based on these results, we show how to make inference on the quantile factor

loadings in a location-scale shift factor model. When factors affecting the quantiles differ

from those affecting the means of the observed variables, we propose an iterative procedure

to estimate both factors and factor loadings at a given quantile. Simulation results confirm a

satisfactory performance of our estimators in small to moderate sample sizes. In particular, it

is shown that the iterative procedure can consistently estimate common factors that cannot

be captured by PC estimators. Empirical applications of our methods to several datasets of

financial returns are considered.
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1 Introduction

The last decades have seen a rapid progress in the theory of large dimensional factor mod-

els, which are now broadly applied in finance and macroeconomic forecasting and modeling;

see Bai and Ng (2008b) and Stock and Watson (2011) for reviews of recent developments. The

primary advantage of these models is that they provide a parsimonious and flexible way of char-

acterizing the co-movement of many observed variables through a small number of unobserved

factors. A well-known example due to Chamberlain and Rothschild (1983) is the classical char-

acterization of the capital asset pricing model (CAPM) in terms of an approximate factor model

(AFM) for financial asset returns, when the number of assets is very large. In AFM, a panel

Xit of N variables each with T observations can be represented as Xit = λ′iFt + eit,where λi

and Ft are (rx1) vectors of factor loadings and common factors, respectively, with r << N ,

and eit are zero-mean weakly dependent idiyosincratic disturbances which are uncorrelated with

the factors. Thus, according to this standard formulation, AFM can be interpreted as a linear

conditional mean model of Xit given Ft, that is, E(Xit | Ft) = λ′iFt. In line with the use of

quantile regressions (QR hereafter) as a flexible generalization of conditional mean regression

models, our goal in this paper is to introduce quantile variation in factor modelling through

a novel concept in this setup: quantile factor models (QFMs hereafter), as well as to analyze

estimation and inference of such models.

The main feature of QFMs is that, conditional on Ft, the quantiles of these observed variables

are linear in Ft. The coefficients in these linear functions for the τth quantile (where 0 < τ < 1),

denoted as the quantile factor loadings (QFL hereafter ) at τ , such that QXit
[τ | Ft] = λ′i(τ)Ft,

are allowed to be different for all variables. In this fashion, they become analogues to factor

loadings in standard factor models. Moreover, for each individual variable, the loadings can

be different at different quantiles of its distribution over time, allowing the common factors to

exhibit heterogeneous effects on different parts of the conditional distributions of the observed

variables. The QFL at different quantiles λi(τ), labeled as QFL processes, can be viewed as

functions of τ , and they constitute our main object of interest in the rest of the paper.

To estimate the common factors and the QFL processes, we initially propose a simple two-

step procedure which is easily implementable in practice. In the first step, the common factors

Ft are estimated using principal components analysis (PCA hereafter); in the second step, the

QFL at various τ́s, are estimated using QR for each time series, where the unobserved factors

are replaced by their estimates in the first step. Uniform consistency and weak convergence of

the estimated QFL processes are established under general assumptions. In particular, we show

that, among other conditions, if T 5/4/N → 0 as N,T → ∞ jointly, the distributional effects of

estimating the common factors can be asymptotically ignored in the second step.

The asymptotic distributions of the entire QFL process can be used to test hypotheses of
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very general forms.For example, one can consider testing whether the λi(τ) loadings are equal to

a pre-specified value for a given τ or for all τ́ s, and even more generally whether the loadings lack

quantile variation and therefore should be considered as constant.1 In particular, we illustrate

how to use these results to make inference in panel data generated by a location-scale shift factor

model

While the two-step procedure provides a straightforward and intuitive approach for estima-

tion and inference in a large class of QFMs (i.e, when factors only affect location or the same

factors affect both location and shift), it is found to fail when there are factors that affect the

quantiles but do not affect the means of the observed variables. To address this problem, an

iterative procedure based on minimization of the standard check function in QR is proposed to

estimate both the common factors and the factor loadings at a given quantile, Ft(τ) and λi(τ),

respectively. The consistency of the such estimators is proven for a smoothed version of the

iterative procedure. In our illustrative setup of a location-scale shift model, we show that a

comparison based on the R2´s of simple regressions of the quantile invariant factors obtained

by PCA in the two-step procedure, Ft, on a subset of the most relevant quantile-varying factors

obtained from the iterative procedure, Ft(τ) often provides a useful check on whether the factors

affecting the location and scale of the model are identical or different.

Our contribution is twofold. First, as pointed out before, our paper is related to a bur-

geoning literature on QRs which is summarized by Koenker (2005). In particular, there is a

growing number of studies on the intersection of QRs and panel data models; cf. Koenker (2004),

Abrevaya and Dahl (2008), Graham et al. (2009), Lamarche (2010), Canay (2011), Rosen (2012),

Kato et al. (2012) and Harding and Lamarche (2014), among others. Our setup differs from all

these quantile panel data models in that our regressors (the common factors) are not observ-

able. In this respect, some of our results on how to carry out inference on QFL are inspired by

Xiao and Koenker (2009)´s analysis of how to implement QR with generated regressors, albeit

in a different setting to ours.

Second, we also add to the rapidly growing literature on factor models. To the best of

our knowledge, this is the first paper to propose the concept of QFM. Admittedly, there are

other studies which also combine QR and factor models like, e.g., Ando and Tsay (2011) who

analyze a factor-augmented QR where the factors are estimated by PCA from a standard factor

model. Their approach can be viewed as an extension of factor-augmented regressions (see

Bai and Ng 2006) and factor-augmented extremum estimators (see Bai and Ng 2008a) to factor-

augmented QRs. Although our model is obviously different from the settings of all these papers

in that they do not address to issue of how to estimate QFL processes, our results are related

to the factor-augmented QRs since, in the second step of our two-step estimation procedure,

1In the latter case, since the null hypotheses involves unknown parameters that need to be estimated (the
unknown constant value), we follow Koenker and Xiao (2002) in using the Khmaladez martingale transformation

to solve the so-called Durbin’s problem.
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the true factors are also replaced by the estimated factors. This has relevant consequences

in relation to the standard conditions in the literature on the relative asymptotic behaviour

of N and T for the estimated factors to be treated as known when the optimizing criteria

are smooth object functions like, e.g., minimization of sums of squared residuals. In effect,

while these conditions are T 1/2/N → 0 for linear factor-augmented regressions (see Bai and Ng,

2006) and T 5/8/N → 0 for non-linear factor-augmented regressions (Bai and Ng (2008a)),lack

of smoothness in our criterion function requires the stronger condition T 5/4/N → 0 for the

estimated factors to be treated as known.

Several empirical applications of there aforementioned methods are provided using large

panels of stock and mutual fund returns as well as the portfolios used by Fama and French

´(1993; FF hereafter)) in their classical paper on common risk factors. Our results indicate that

in the case of mutual funds and FF portfolios a pure location shift or a location-scale model

sharing the same common factors seem to be compatible with the data generating processes

of these financial variables. In contrast, we identify some relevant subsets of the stock returns

where loading and factors seem to exhibit substantial quantile variation which originates from

different factors affection mean and variance.

The rest of the paper is organized as follows: In Section 2, the QFMs are defined, several

examples are given, and the two-step estimator is proposed. Section 3 present the main asymp-

totic results for the estimated QFL processes. Section 4 proposes an iterative procedure when

the two-step procedure fails. Section 5 contains some simulation results, and Section 6 considers

several empirical applications of our methods to financial data where we show how to make in-

ference for the entire QFL process based on the asymptotic distributions established in Section

2. Finally, Second 7 concludes and suggests several avenues for future research. Proofs of the

main results are collected in an Appendix.

2 Model and Estimators

2.1 Quantile Factor Models

Suppose there is a panel of observable random variables {Xit} generated by

Xit = λ′i(Uit)Ft, where U ⊥ F, and Uit ∼ U [0, 1] (1)

for i = 1, . . . , N and t = 1, . . . , T . The common factors Ft is a r × 1 vector of unobservable

random variables, with Ft ∈ F ⊂ Rr for all t. Let T denote a closed subinterval of (0, 1), and

suppose that λi(τ) ∈ A ⊂ Rr for all i and τ ∈ T . If we further assume the mapping τ 7→ λ′i(τ)f

to be strictly incresing for all i and any f ∈ F , then λ′i(τ)Ft is the τth quantile of Xit conditional
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on Ft since:

P
[
Xit ≤ λ′i(τ)Ft|Ft

]
= P

[
λ′i(Uit)Ft ≤ λ′i(τ)Ft|Ft

]
= P [Uit ≤ τ ] = τ.

In other words, model (1) implies

QXit
[τ |Ft] = λ′i(τ)Ft for all τ ∈ T . (2)

Therefore, conditional on Ft, the quantiles of Xit have a factor model structure. As a result,

we label (1) as a QFM, while Λ(τ) = (λ1(τ), . . . , λN (τ))′ are denoted as QFL at τ . At first

look, it looks like representations (1) and (2) are equivalent, but Example 3 (to be shown below)

provides a counterexample showing that (1) is in fact more restrictive than (2).

Similar representation for conditional quantiles can be found in Chernozhukov and Hansen

(2006, 2008), Canay (2011), and many other papers. It also has an interesting random coefficient

interpretation (see Koenker 2005) as we can interpret λ̃it = λi(Uit) as random coefficients.

Moreover, since the dependence between the elements of Ft is left unrestricted, the factors can

include different transformations of the same variable, and thus model (1) can approximate

nonlinear conditional quantile functions arbitrarily well by increasing the number of factors. In

this sense, the linearity of the quantile factor model (1) is not as restrictive as it might look.

2.2 Examples

In this section we provide a few examples of QFMs stemming from different specifications of

location-scale shift models. To simplify the exposition, it is assumed that there is only one

factor affecting the mean, ft. As regards the scale, it is assumed that either: (i) there is no

factor structure in the scale (homoskedasticity), or (ii) the same factor that affects location also

affects the scale, ft, or a different factor, gt 6= ft affects the scale, (heteroskedasticity).

Example 1. Location shift model. Xit = αift+ ǫit, where {ǫit} are i.i.d errors with cumula-

tive distribution function (CDF) Fǫ. This is a standard factor model and it can be equivalently

written as Xit = αift + Qǫ(Uit), where Qǫ(τ) = F
−1
ǫ (τ) = inf{c : Fǫ(c) ≤ τ} is assumed

to be uniquely defined for each τ ∈ (0, 1), and {Uit} are i.i.d and uniformly distributed over

[0, 1]. Thus, this model is can be expressed as model (1) by defining λi(Uit) = [Qǫ(Uit), αi]
′ and

Ft = [1, ft]
′.

Example 2. Location-scale shift model (same sign-restricted factor). Xit = αift+ftǫit,

where ft ≥ 0 for all t and {ǫit} are defined as in Example 1. The model can be written as in (1)

by defining λi(Uit) = Qǫ(Uit) + αi and Ft = ft.

Example 3. Location-scale shift model (sign-unrestricted factor). Xit = αift + ftǫit,

where {ǫit} are defined as in Example 1 and the sign of ft is unrestricted. As in Example 2,

5



this model can be written as Xit = (Qǫ(Uit) + αi)ft. When ft ≥ 0, the conditional τ th quantile

of Xit given ft is (Qǫ(τ) + αi)ft; when ft < 0, the conditional τ th quantile of Xit given ft is

(Qǫ(1− τ)+αi)ft. Therefore, this model cannot be nested by model (1) since the quantile factor

loadings depend on the signs of the factors.

Example 4. Location-scale shift model (different factors). Xit = αift + gtǫit, where

{ǫit} are defined as in Example 1 and gt > 0. In this case, Xit has an equivalent representation

in form of (1) with λi(Uit) = [αi, Qǫ(Uit)]
′ and Ft = [ft, gt]

′.

Example 5. Nonlinear factor model. The model Xit = λi · ft · eǫit, where λi > 0, ft > 0,

can be written as a special case of model (1) with Ft = ft and λi(Uit) = λi · eQǫ(Uit). Note that

taking logarithm on both sides we get logXit = log λi + log ft + ǫt, that is, a linear factor model

for logXit where the new factor gt = log ft can be easily estimated. However, it is not possible

to estimate the original factors and factor loading processes from this transformed linear model.

The five examples above represent some but not all of the possible instances where an AFM

(as defined in Chamberlain and Rothschild 1983) implies a QFM, but their role is to highlight

some important points in our specification of QFMs. First, it is crucial that the mapping

τ 7→ λ′i(τ)f is monotone for all possible values of Ft in F . In a simple linear model like (1),

this may require the domain of Ft to be restricted, such as in Example 2. Second, the factors

and the number of factors in the QFM may be different from those in the AFM. For instance,

in Example 4, if E(ǫit) = 0 and ft 6= gt, then there is only one factor in the approximate factor

model: ft, but there would be two factors in the QFM: ft and gt. The implication of such

differences for the estimation of the quantile factor loadings will be discussed in detail in the

next section.

Example 3 poses an interesting issue since it illustrates that representation (2) is more general

than model (1). To see this, note that in this example we have

QXit
[τ |ft] = (Qǫ(τ) + αi)ft · 1{ft ≥ 0}+ (Qǫ(1− τ) + αi)ft · 1{ft < 0}, (3)

which is a special case of (2) by setting

λi(τ) = [Qǫ(τ) + αi, Qǫ(1− τ) + αi]
′ and Ft = [ft · 1{ft ≥ 0}, ft · 1{ft < 0}]′.

Moreover, it is easy to see that for any uniformly distributed random variables U1,it and U2,it,

the model

Xit = (Qǫ(U1,it) + αi)ft · 1{ft ≥ 0}+ (Qǫ(U2,it) + αi)ft · 1{ft < 0}, (4)

yields conditional quantiles of form (3). Example 3 is a special case of model (4) with U1,it =

U2,it = Uit. Therefore, in this example, the conditional quantiles have the form of (2), but
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it is impossible to write them in the form of model (1) since the mapping τ 7→ λ′i(τ)f is not

monotone. Interestingly, by choosing U1,it = Uit and U2,it = 1 − Uit in model (4) we get a

strictly increasing mapping and the model becomes a special case of model (1). In particular,

when the distribution of Uit is symmetric around 0, it is easy to see that the model reduces to

Xit = αift + |ft|ǫit, a special case of Example 4.

2.3 A Two-step Estimator

Note that we can also write model (1) as:

Xit = λ′i(τ)Ft + [λi(Uit)− λi(τ)]
′Ft = λ′i(τ)Ft + vit, (5)

where vit = [λi(Uit) − λi(τ)]
′Ft and P [vit ≤ 0|Ft] = τ . The main objects of interest are the

common factors and the QFL process at all τ ∈ T . If Ft were to be observed, using standard

QR of Xit on Ft leads to consistent and asymptotically normally distributed estimators of λi(τ)

for each i and τ ∈ T . However, since Ft are not observable, a feasible procedure is to estimate

the factors first, and then run QR of Xit on the estimated factors, F̂t.

Define λi = E[λi(Uit)], then model (1) can also be rewritten as:

Xit = λ′iFt + [λi(Uit)− λi]
′Ft = λ′iFt + eit, (6)

where eit = [λi(Uit)− λi]
′Ft, and E[eit|Ft] = 0. Thus, if λi, Ft and eit satisfy some assumptions

(see Assumption 1 below), (6) can be viewed as an AFM, and the factors can be consistently

estimated by PCA as in Stock and Watson (2002) and Bai (2003).

Remark 1: It is important to notice that, relative to a standard AFM (like in Example 1

above), we impose stronger assumptions: Uit needs to be uniformly distributed, orthogonal to

Ft and, more importantly, they are assumed to be i.i.d. across i and t. Thus, this is equivalent

to assuming that ǫit in Example 1 is i.i.d. across i and t, which is a stronger requirement

than Bai and Ng´s (2002) assumptions allowing the idiyosincratic error terms in AFM to be

weakly correlated across both dimensions. Likewise, representation (6) implies the following

characterization of the var-cov matrix of Xt: E(XtX
′

t) = ΛΣFΛ
′ + Σe, where Σe is a diagonal

matrix.

The above representation leads us to the following two-step estimation procedure for the

common factors and the QFL at various τs:2

1. First, obtain the estimated factors F̂ . For example, following Bai (2003), one can use

PCA where F̂ = (F̂1, . . . , F̂T )
′ are the r eigenvectors (multiplied by

√
T ) of XX ′ associated

2As will be discussed in Section 4 below, this two-step procedure turns out to fail if the data are generated
by the type of location and scale-shift models illustrated in Example 4 above.
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with the r largest eigenvalues, where X = {Xit}′ is a T ×N matrix collecting all the observable

variables.

2. For i = 1, . . . , N and each τ ∈ T , the QR estimator λ̂i(τ) is then defined as:

λ̂i(τ) = argmin
λ∈A

T−1
T∑

t=1

ρτ (Xit − λ′F̂t) (7)

where ρτ (u) = u(τ−1{u < 0}) is the so-called check function which provides the basic optimizing

criterion in QR.

Both steps of this estimation procedure can be easily implemented in standard econometric

packages, therefore becoming a very convenient tool for the practitioners. Furthermore, an

observation of independent interest is that, when the errors eit in model (6) have symmetric

distributions around zero, our second step at τ = 0.5 can be viewed as a median regression for

estimating the factor loadings in an AFM while the estimated factor loadings in Bai (2003) are

obtained by OLS regressions of Xit on F̂t.

As is well known, a generic problem of factor analysis is the indeterminacy of the factors

and factor loadings up to to a rotation, which also pertains to the QFMs defined above. In

effect, notice that for any invertible r × r matrix A, model (1) is observationally equivalent to

(λ′i(Uit)A
−1)(AFt). Therefore, the factors and the quantile factor loadings can only be identified

up to a rotation, unless r2 restrictions are imposed to pin down a unique rotation matrix. The

PCA estimators defined above implicitly adopt the normalization that T−1
∑T

t=1 FtF
′
t = Ir

and N−1
∑N

i=1 λiλ
′
i is orthogonal, which is equivalent to a specific choice of A. Bai and Ng

(2013) consider these restrictions (labeled as PC1) as well as other alternative normalizations

that uniquely determine the rotation matrix. For example, their restrictions PC2 assumes that

T−1
∑T

t=1 FtF
′
t = Ir and [λ1, . . . , λr]

′ is a lower triangular matrix, while restriction PC3 assumes

[λ1, . . . , λr]
′ = Ir. All these sets of restrictions imply different rotation matrices, but one has to

resort to specific economic theories to determine which one is more appropriate. In this paper

we do not consider explicitly the problem of imposing identification restrictions. Therefore, our

main results in the next section are stated for a (possibly random) rotation of λi(τ). Yet,for

illustrative purposes we will choose PC1 in deriving the asymptotic properties of the estimated

QFL processes in the two-step procedure, though it is rather straightforward to extend our

results to estimators under the other two identification restrictions.
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3 Asymptotic Results

3.1 Consistency

To establish the uniform consistency of the estimated QFL, we impose the following assumptions

for each i = 1, . . . , N :

Assumption 1. Suppose that the observed data {Xit} are generated by model (1) and

(i) The sequence {Ft} is strictly stationary and m-dependent with E‖Ft‖4 < ∞, and ΣF =

E(FtF
′
t ) > 0.

(ii) The random variables {Uit} are uniformly distributed over [0, 1] and independent across i

and t, and Uit is independent of Ft for all i, t.

(iii) There is a compact set A ⊂ Rr such that λi(τ) ∈ A for all i and τ ∈ T , and there is a

ΣΛ > 0 such that ‖N−1
∑N

i=1 λiλ
′
i − ΣΛ‖ → 0 as N → ∞.

(iv) The eigenvalues of ΣFΣΛ are distinct.

(v) The conditional density fX(x|Ft = f) exists, and is bounded and uniformly continuous in

x for all f ∈ F ; J(λi(τ)) = E[fX(λi(τ)
′Ft|Ft)FtF

′
t ] is positive definite for all τ .

Define HNT = (Λ′Λ/N)(F ′F̂ /T )V −1
NT , where Λ′ = [λ1, . . . , λN ], F ′ = [F1, . . . , FT ], F̂

′ =

[F̂1, . . . , F̂T ], and VNT is a r×r diagonal matrix with the eigenvalues of (NT )−1XX ′ in decreasing

order. Further, define H0 = Σ
1/2
Λ ΥV −1/2, where V is a diagonal matrix with the eigenvalues

of Σ
1/2
Λ ΣFΣ

1/2
Λ in decreasing order, and Υ is a matrix of corresponding eigenvectors. It can be

shown that:

Theorem 1 (Uniform Consistency). Under Assumption 1, supτ∈T ‖λ̂i(τ)−H−1
NTλi(τ)‖ = oP (1)

and supτ∈T ‖λ̂i(τ)−H−1
0 λi(τ)‖ = oP (1) for all i = 1, . . . , N .

Remark 2: The proof of Theorem 1 consists of two steps. In the first step, it is shown that

T−1
∑T

t=1 ρτ (Xit − λ′F̂t) converges to E[ρτ (Xit − H ′
0Ft)] uniformly in τ and λ. In the second

step, given that H−1
0 λi(τ) is the unique minimizer of E[ρτ (Xit − H ′

0Ft)] by Assumption 1(v)

and that λ̂i(τ) is defined as the minimizer of T−1
∑T

t=1 ρτ (Xit − λ′F̂t), the uniform consistency

of λ̂i(τ) for H
−1
0 λi(τ) follows from Lemma B.1 of Chernozhukov and Hansen (2006), which is a

generalization of the consistency of M-estimators to estimated processes. A key result to show the

uniform convergence of T−1
∑T

t=1 ρτ (Xit−λ′F̂t) to E[ρτ (Xit−H ′
0Ft)] and also to prove Theorem

2 below is the following consistency result for the estimated factors: T−1
∑T

t=1 ‖F̂t−H ′
NTFt‖2 =

oP (1). This result becomes a direct consequence of Theorem 1 in Bai and Ng (2002) if one

can show that the factors, factor loadings λi and the error terms eit in Model (6) all satisfy

Assumptions A to D in their paper. However, in our setting, the error terms eit = (λi(Uit)−λi)′Ft
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do not satisfy Assumption C.5 of Bai and Ng (2002), which requires

E

∣∣∣∣∣N
−1/2

N∑

i=1

[eiteis − E(eiteis)]

∣∣∣∣∣

4

<∞ for all t, s. (8)

To see this, consider the simple case where r = 1. Define uit = λi(Uit)−λi so that in our model

eit = uitFt. When t = s, we have

E

∣∣∣∣∣N
−1/2

N∑

i=1

[eiteis − E(eiteis)]

∣∣∣∣∣

2

= N−1
N∑

i=1

N∑

j=1

(
E[e2ite

2
jt]− E[e2it]E[e

2
jt]
)
.

Since in our setup, E[e2ite
2
jt]−E[e2it]E[e

2
jt] = E[u2it]E[u

2
jt]
(
E[F 4

t ]− (E[F 2
t ])

2
)
6= 0 for any i, j, unless

F 2
t is a constant, the previous expression can not be bounded, and thus Assumption C5 of

Bai and Ng (2002) is violated. As shown in the Appendix, by imposing the stronger condition

E‖Ft‖4 < ∞3, we are able to prove that Theorem 1 of Bai and Ng (2002) still holds even when

their Assumption C.5 is not satisfied in our model. �

3.2 Weak Convergence

To establish the limiting distribution of the estimated quantile factor loading processes, we

impose the following additional assumptions:

Assumption 2. (i) E‖Ft‖8 < ∞; (ii) T 5/4/N → 0 as N,T → ∞; (iii) For each i ≤ N , the

eigenvalues of JH0
(λi(τ)) = H ′

0J(λi(τ))H0 are bounded below by a constant ρ∗ > 0 uniformly in

τ .

Define ϕτ (u) = 1{u < 0} − τ , and let Br be a vector of r independent standard Brownian

Bridges, then:

Theorem 2 (Weak Convergence). Under Assumptions 1 and 2, it holds that, for each i,

JH0
(λi(·)) ·

√
T [λ̂i(·)−H−1

NTλi(·)] = −ViT (·) + oP (1) in ℓ∞(T ),

where ViT (·) = T−1/2
∑T

t=1 ϕτ (Xt − λi(·)′Ft)H
′
0Ft converges weakly to Br(·) in ℓ∞(T ).

Remark 3: Bai and Ng (2008a) show that, for extremum estimators with twice continuously

differentiable object functions, the estimated factors can be treated as known when they are

regressors, if (among other conditions) T 5/8/N → 0. In contrast, the estimation-effects-free

property of our estimators requires a much larger N compared to T , i.e., T 5/4/N → 0. This

3Assumption A of Bai and Ng (2002) does require E‖Ft‖4 < ∞, which is only needed to prove Theorem 2 in
their paper. To prove their Theorem 1, E‖Ft‖2 < ∞ is sufficient.
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difference is mainly due to the fact that our object function is not smooth, and thus a necessary

condition for the estimated factors to have no distributional effects is

√
T · max

1≤t≤T
‖F̂t −H ′

NTFt‖ = oP (1). (9)

While in Bai and Ng (2008a), due to the smoothness of their object function, it is enough to

have (
OP (1) +OP (

√
T/

√
N)
)
· max
1≤t≤T

‖F̂t −H ′
NTFt‖ = oP (1),

we establish in the Appendix the following uniform convergence rate for the estimated factors

max
1≤t≤T

‖F̂t −H ′
NTFt‖ = OP (T

−5/8) +OP (T
1/8/

√
N), (10)

illustrating that the required condition T 5/4/N → 0 is therefore a direct consequence of (9) and

(10). �

Remark 4: Suppose that T = [ǫ, 1−ǫ] for some ǫ > 0. For small values of ǫ, Theorem 2 may

not provide a good approximation for the finite sample distributions of the estimators. Usually,

the Gaussian approximation performance well for ǫ > 30/T (e.g., when T = 200, ǫ > 0.15)

while for more extreme quantiles the small sample distributions are better approximated by the

asymptotic distributions of extremal conditional quantiles (see Chernozhukov 2005). �

The aforementioned asymptotic theory involves a random rotation of the original QFL. As

discussed in the end of Section 2.1, this random rotation matrix H−1
NT depends on the factor

and factor loadings in (6). As a result, it is not possible to make any inference about the

individual elements of the QFL loadings unless some identification restrictions are imposed.

Suppose we consider the following widely adopted (also called restriction PC1 in Bai and Ng

2013) restrictions in factor analysis:

T−1
T∑

t=1

FtF
′
t = Ir and N−1

N∑

i=1

λiλ
′
i is diagonal, (11)

then the representation in Theorem 2 still holds if we replace H−1
NT by Ir. Formally, we have:

Corollary 1. Under Assumptions 1 and 2 , the following representation holds for each i if the

restrictions in (11) are satisfied for large N and T :

JH0
(λi(·)) ·

√
T [λ̂i(·)− λi(·)] = T−1/2

T∑

t=1

ϕτ (Xt − λi(·)′Ft)H
′
0Ft + oP (1) in ℓ

∞(T ). (12)

The result above follows directly from Theorem 2 by noting that, as proven in Bai and Ng

(2013), H−1
NT − Ir = OP (min[N,T ]−1) under restrictions (11).

11



Theorem 2 also allows us to construct confidence band and make inference for the entire

QFL process if uniform (in τ) consistent estimators of JH0
(λi(τ)) are available. Following

Powell (1986) the following estimator is considered:

Ĵ(λ̂i(τ)) =
1

2hT · T
T∑

t=1

{
1{|Xit − λ̂i(τ)

′F̂t| ≤ hT }F̂tF̂
′
t

}
, (13)

where the following additional assumption is also adopted:

Assumption 3. The bandwidth parameter hT satisfies: hT → 0 and hT · T 1/2 → ∞ and

‖HNT −H0‖/hT = oP (1).

Then, the following result shows that weak convergence still holds when JH0
(λi(τ)) is replaced

by its estimate.

Theorem 3. Under Assumptions 1 to 3, it holds that supτ∈T
∥∥Ĵ(λ̂i(τ))− JH0

(λi(τ))
∥∥ = oP (1),

and thus for each i ≤ N , Ĵ(λ̂i(·)) ·
√
T [λ̂i(·)−H−1

NTλi(·)] ⇒ Br(·) in ℓ∞(T ).

By Theorem 3, we can construct confidence bands for H−1
NTλi(τ). For example, when r = 1,

the α level confidence band is λ̂i(τ) ± T−1/2Ĵ(λ̂i(τ))
−1Cα, where Cα is the αth quantile of

supτ∈T |B(τ)|. Theorem 3 also implies that for each i ≤ N and each τ ∈ T ,

[τ(1− τ)]−1/2 · Ĵ(λ̂i(τ)) ·
√
T [λ̂i(τ)−H−1

NTλi(τ)] N (0, Ir).

3.3 Discussions

3.3.1 Misspecification

Note that Assumption 1(iii) excludes the models considered in Examples 1 and 4, since in both

instances we have λ′i = E[αi, Qǫ(Uit)] = [αi, 0], so ΣΛ has reduced rank. As discussed earlier,

while there is only one factor ft in the AFM, there will be two factors in the QFM (Ft = [1, ft]
′

in Example 1, and Ft = [ft, gt]
′ in Example 4). Therefore, while in the first step we can only

consistently (up to a scale) estimate ft, in the second step the QR of Xit on f̂t will fail to

consistently estimate the QFL due to omitted regressors.

While the general effects of omitted regressors in QR have been discussed in Angrist et al.

(2006a), in this paper we focus on analyzing how to estimate the QFL if the estimated factors

in the first step are only consistent for a subspace of the factors in the QFM. To do so, consider

the following general location-scale model

Xit = λ′iFt + gi(Ft)ǫit,

12



where the first element of Ft is 1, gi(·) is a (possibly nonlinear) function such that gi(Ft) > 0

with probability 1, and the disturbance terms {ǫit} are defined as in the list of examples. If

the functions gi(·) are assumed to be known, our method should still work if the regressors in

the second step are set as F̂t and gi(F̂t). Yet, when gi(·) are unknown, our two-step method

generally does not work.

For example, when gi(·) is known to be a unknown linear combination of the factors, we have

Xit = λ′iFt + (γ′iFt)ǫit,

where γ′iFt > 0 with probability 1. The omitted variable problem arises if there is a k ≤ r such

that: λik = 0 but γik 6= 0 for all i, because in this case the kth factor appears in the QFM but

not in the AFM. Note that our method still works if, for some k: λik 6= 0 but γik = 0 for all i,

because in this case the kth factor appears in the AFM but not in the QFM.

Example 1 illustrates the case where the omitted regressor happens to be a time-invariant

factor. In general, when the only omitted regressor is the constant factor, we can use [1, F̂ ′
t ]
′ as

regressors in the second step and, as will be shown in Section 6, the derivation of the limiting

distribution of the estimated QFL processes follows along the same lines as Theorem 2. In

particular, in Section 6 we show show to test the hypothesis that the factors only have location-

shift effect, i.e., the QFL processes are constant functions of τ .

3.3.2 Cross-sectional quantiles

In a working paper version of Gouriéroux and Jasiak (2008) (GJ hereafter), the authors discuss

the concept of QFM but , focusing on the cross-sectional quantiles of the observed variables. To

compare our models with theirs, consider the following model:

Xit = αift + gtǫit.

Instead of treating αi as fixed parameters, GJ assume that αi are i.i.d random variables with

(
αi

ǫit

)
∼ N

((
µα

0

)
,

(
σ2α

σ2ǫ

))
,

and treat ft and gt as fixed parameters (i.e., everything is conditional on them). As a result,

Xit are i.i.d across N for each t, and

P [Xit ≤ x] = P [αift + gtǫit ≤ x] = Φ

(
x− µαft√
σ2αf

2
t + σ2ǫ g

2
t

)
,
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where Φ(·) is the c.d.f. of a standarized normal distribution. Thus, we can define the cross-

sectional quantile of Xit at time t as follows:

QXt(τ) = Φ−1(τ)
√
σ2αf

2
t + σ2ǫ g

2
t + µαft,

while, for more general setups, GJ assume that

QXt(τ) = β(τ)′Gt (14)

for some unknown factors Gt. In the our specific example, β(τ) = [Φ−1(τ), µα]
′ and Gt =

[
√
σ2αf

2
t + σ2ǫ g

2
t , ft].

By treating αi as i.i.d and ft and gt as fixed parameters, X1t, . . . ,XNt are i.i.d for each t,

so that it is possible to consistently estimate QXt(τ). Furthermore, given a consistent estimator

Q̂Xt(τ), it is easy to get a consistent estimator Ĝt for the space of Gt, using equation (14).two-

step

However, compared to ours, their approach has two main limitations. On the one hand, it

is impossible to consistently estimate the space of [gt, ft], which is the true object of interest.

This is so because the factors Gt = [
√
σ2αf

2
t + σ2ǫ g

2
t , ft] for the cross-sectional quantiles do not

span the linear space of [gt, ft]. Thus, even if Gt could be consistently estimated, the space of

[gt, ft] cannot. Notice that this is the case under the aforementioned very strong distributional

assumptions, and the relationship between Gt and [gt, ft] could even be more complicated under

alternative distributional assumptions. On the other hand, it is impossible to estimate the

loadings αi, or the quantile factors loadings defined as in our paper: [αi, Qǫ(τ)].

4 Extensions

4.1 A Solution When the Two-Step Approach Fails

The two-step approach relies on the assumption that a QFM can be transformed into an AFM,

from which the factors can be extracted as the PC estimators. One key restriction is Assumption

1(iii), which requires that the factors shifting the quantiles of X should also shift the means of

X. In Example 4, Xit = αift + gtǫit, but λi = E[λi(Uit)] = [αi,E[Qǫ(Uit)]]
′ = [αi, 0]

′; thus

Assumption 1(iii) is violated. As a result, the factor gt, which shifts the quantiles but not

the means of X, can not be recovered from the first step PC estimators. In general, a major

limitation of our two-step approach is that the first step cannot consistently estimate the factors

that only shift the quantiles but not the means.

However, note that if we further assume that in Example 4 either gt is a function of ft or

gt is independent of ft and ǫit, and that the median of ǫit is 0, we have for each τ ∈ (0, 1) and
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τ 6= 0.5,

QXit
(τ |Ft) = αift +Qǫ(τ)gt

where Ft = [ft, gt]
′, and the loadings λi(τ) = [αi, Qǫ(τ)]

′ satisfy Assumption 1(iii) if αi have

enough cross-sectional variations. Even though in the AFM form of the model, the factor gt

plays no special role, since it does not shift the means of X, the above expression implies that

the quantiles of X across individuals at each τ are informative about the factor gt. Now consider

the following general step up for a given τ ∈ (0, 1):

Xit = λi(τ)
′Ft(τ) + Uit, (15)

where the errors Uit satisfy

P [Uit ≤ 0|Ft(τ)] = τ,

and λi(τ) and Ft(τ) are r(τ)× 1 vector of factor loadings and factors at quantile τ . As in model

(1), we allow the factor loadings to be different not only across i but also across τ , but the main

difference now is that in model (15) the factors and the number of factors are also allowed to

differ across τ . This new setup includes Example 4 since, when τ 6= 0.5, we have r(τ) = 2 and

Ft(τ) = [ft, gt]
′ and, when τ = 0.5, we have r(τ) = 1 and Ft(τ) = ft. Notice that in the two-step

approach, the first step focuses on the case τ = 0.5 (since the mean and the median of ǫit are

both 0), where the factor gt is treated as part of the idiosyncratic errors. In order to recover the

factor gt, we need to consider the quantiles of X at other τs, and go beyond the AFM and the

standard PC estimators for the factors.

Just as the standard QR replaces the least-square object function by the check function,

we consider the following object function where the check function replaces the least-square

objection function of the PCA estimators:

S(F,Λ, τ) =
N∑

i=1

T∑

t=1

ρτ (Xit − λ′iFt).

The estimated factors F̂ (τ, k) = [F̂1(τ, k), . . . , F̂T (τ, k)]
′ and estimated factor loadings Λ̂(τ, k) =

[Λ̂1(τ, k), . . . , Λ̂N (τ, k)]′ at quantile τ are defined as

[F̂ (τ, k), Λ̂(τ, k)] = argmin
F∈RT×k,Λ∈RN×k

S(F,Λ, τ), (16)

where k is a predetermined positive integer. Unlike the PCA estimators, the optimal factors

for problem (16) with given loadings do not have a closed form expression. The analysis of

the asymptotic properties of F̂ (τ, k) and Λ̂(τ, k) is particularly challenging even when the true

number of factors r(τ) is known, mainly due to the non-smoothness of the object function and

the increasing dimension of the parameters.
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There are some recent studies in the literature on panel data models which are related to

problem (16). For example, Fernández-Val and Weidner (2015) and Chen et al. (2014) consider

bias-corrected fixed-effects estimators for nonlinear panel data models with both individual and

time effects. Similar to our QFM (withr = 1), their models contain N+T incidental parameters,

but their object functions are assumed to be smooth and strictly concave. Kato and Galvao

(2011) study quantile regressions for panel data models where they replace the check functions by

some smooth object functions, but in their model only N incidental parameters are considered.

Problem (16) features both a non-smooth object function and (N+T )∗k incidental parameters.

In the next subsection, along the lines of Kato and Galvao (2011), we show how to overcome

the first difficulty by smoothing the object function S(F,Λ, τ), as well as provide a consistency

result for the estimated factors and factor loadings. In the rest of this subsection, we describe

a simple and fast computational algorithm for problem (16).

Starting with any T × k matrix F̂ (1) (for notational simplicity we omit the dependence of

the estimated factors and loadings on τ and k), the estimated factors in problem (16) can be

obtained using the following iterative procedure:

1. Given F̂ (m) = [F̂
(m)
1 , . . . , F̂

(m)
T ], using QR of Xit on F̂ (m) to estimate Λ̂

(m+1)
i for i =

1, . . . , N .

2. Given Λ̂(m+1) = [Λ̂
(m+1)
1 , . . . , Λ̂

(m+1)
N ], using QR of Xit on Λ̂(m+1) to estimate F̂

(m+1)
t for

t = 1, . . . , T .

3. Repeat Steps 1 and 2 until F̂ (k) and F̂ (k+1) become close enough.

4.2 A Smoothed Version of the Object Function

The non-smoothness of the object function in problem (16) makes it difficult to analyse the

asymptotic properties of the estimators in the iterative procedure. To overcome this difficulty,

we use the idea of Horowitz (1998) to smooth the object function. In particular, let K(u) be a

kernel function, and define:

G(u) = 1−
∫ u

−∞

K(s)ds,

then the indicator function 1{u ≤ 0} can be approximated by GcNT
(u) = G(u/cNT ), where cNT

is a sequence of positive numbers that goes to 0 as N and T get large. Define the object function

as follows:

S∗(F,Λ, τ) =

N∑

i=1

T∑

t=1

(Xit − λ′iFt)[τ −GcNT
(Xit − λ′iFt)]

Following Bai (2009), we estimate the realizations of the quantile factors by treating them

as fixed parameters. So, from now on, let F 0 denote a particular realization of the the random
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quantile factors.4 Let F and A be subsets of R such that F 0
tj(τ) ∈ F and λ0ij(τ) ∈ A for

j = 1, . . . , r(τ). Then, estimators are defined as:

[F̂ (τ, k), Λ̂(τ, k)] = argmin
Ft∈Fk,λi∈Ak

S∗(F,Λ, τ). (17)

Similar to the PC estimator, we impose the following restrictions to avoid rotational indetermi-

nacy

F̂ (τ, k)′F̂ (τ, k)/T = Ik and Λ̂(τ, k)′Λ̂(τ, k)/N is diagonal.

It should be noted that Theorem 4 also holds for other identification restrictions. Define

l(z) = z[τ − GcNT
(z)], ∂zl(z) = ∂l(z)/∂z, and ∂z2 l(z) = ∂2l(z)/∂z2. We impose the follow-

ing assumptions:

Assumption 4. For a given τ ∈ (0, 1),

(i) There exists a sequence of r(τ) × 1 factors {F 0
t (τ)}Tt=1, and a sequence of r(τ) × 1 non-

random factor loadings {λ0i (τ)}Ni=1, such that Xit = λ0i (τ)
′F 0

t (τ) + Uit for i = 1, . . . , N

and t = 1, . . . , T , and P [Uit ≤ 0] = τ . Moreover, there exists positive definite matrices

ΣΛ(τ) and ΣF (τ) such that N−1
∑N

i=1 λ
0
i (τ)λ

0
i (τ)

′ → ΣΛ(τ) and T
−1
∑T

t=1 F
0
t (τ)F

0
t (τ)

′ →
ΣF (τ).

(ii) The errors {Uit} are i.i.d across i, and independent across t. Their density functions

{fUt}Tt=1 and the first derivatives {f(1)Ut }Tt=1exist, and there is a finite constant M such

|f(1)Ut (·)| < M and E[∂zl(Uit)]
8 < M for all t.

(iii) K is differentiable and
∫∞

−∞
K(s)ds = 1,

∫∞

−∞
sjK(s)ds = 0 for j = 1, . . . , d − 1 and

CK :=
∫∞

−∞
sdK(s)ds ≤ ∞. cNT → 0 as N,T → ∞.

(iv) There exist a sequence of positive constants {b∗NT }, such that mini≤N,t≤T ∂z2 l(Zit) ≥ b∗NT

for any Zit = Xit − λi(τ)
′Ft(τ) with Ft ∈ Fk, λi ∈ Ak.

(v) max{T−5/8, T−1/2N−1/8, T−1/8N−1/4, cdNT }/b∗NT → 0 as N,T → ∞.

Part (i) of Assumption 4 defines the true quantile factors, factor loadings, and the number

of factors at τ ∈ (0, 1). It also requires the quantile factors to be strong. Part (ii) allow us to

consider models like that in Example 4, and it can be relaxed to allow serial dependence of the

errors (i.e., α-mixing as in Fernández-Val and Weidner 2015 for each i). Part (iii) requires K

to be a dth order kernel, and cNT to be a sequence of positive numbers going to zero. Parts

(iv) and (v) impose implicit restrictions on the kernel function and the bandwidth parameter,

because b∗NT depends on l(Zit) and therefore on cNT .
5 Since we are using the function l(z) to

approximate the check function whose second derivatives are 0 (except at z = 0), it is impossible

to bound mini≤N,t≤T ∂z2 l(Zit) below by a constant positive number. Instead, we allow the lower

4Alternatively, we can treat F 0 as random variables but make all assumptions and conclusions conditional on
F 0.

5Fernández-Val and Weidner (2015) has a similar assumption with b∗NT = b∗ for all N,T .

17



bound to be a positive number depending on N and T .

Let PC = C(C ′C)−1C ′ denote the project matrix for C. Let PF̂ (τ) = PF̂ (τ,r(τ)) and PΛ̂(τ) =

PΛ̂(τ,r(τ)). Then, the following result holds.

Theorem 4. Under Assumption 4,

∥∥∥PF̂ (τ) − PF 0(τ)

∥∥∥
2
= oP (1), and

∥∥∥PΛ̂(τ) − PΛ0(τ)

∥∥∥
2
= oP (1).

Theorem 4 implies that if we know the true number of quantile factors at τ , the estimated

factors given by (17) span the same space of the true quantile factors in the following sense: if

one regresses a T × 1 vector Y with ‖Y/
√
T‖ = OP (1) on the estimated factors and the true

factors separately, and let ŶF̂ and F̂F 0 denote the two sets of fitted values, then we have

1

T

T∑

t=1

(ŶF̂ ,t − ŶF 0,t)
2 = oP (1).

Moreover, an important intermediate result in proving Theorem 4 is

(NT )−1/2‖F̂ (τ, k)Λ̂(τ, k)′0Λ0′‖ = oP (1) for k ≥ r,

which implies that the common components of the quantiles of X can be consistently estimated

on average as long as k ≥ r.

The computation of problem (17) can be implemented using the similar iteration procedure

for problem (16), the only difference is that in Steps (1) and (2) we need to use nonlinear

maximization instead of QR.

5 Simulations

5.1 Estimation of Quantile Factor Loadings

To evaluate the finite sample performance of our two-step estimator, we consider the following

data generating processes (DGP) with only one common factor

Xit = λiFt + Ftǫit,

where λi and ǫit are drawn independently from N (0, 1). Ft is generated by Ft = eσZt , where Zt

are independent standard normal variables, and σ = 0.7 such that E(X) ≈ 1.28 and V ar(X) ≈ 1.

This DGP implies a linear QFM of form (1) with λi(τ) = λi + Φ−1(τ). The histograms of

[τ(1 − τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ) − H−1

NTλ1(τ)] from 5000 simulations are plotted together
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with the density function of N (0, 1). We consider the sample sizes with T = 100, 200 and

N = 100, 200, 500, 1000, and the estimates at quantiles τ = 0.10, 0.25, 0.50, 0.75, and 0.90. The

results are reported in Figures 1 to 5. It can be observed that, as expected, the histograms of

the constructed statistics are close to the density functions of standarized normal variables as

N and T get large. It should be noticed that the approximations are more accurate for the

quintiles at the middle than in the tails. Moreover, as a common problem in nonparametric

density estimations, the bandwidth parameter hT has a significant effect on the distributions of

the statistics. In our simulations we simply set hT = T−1/3, so there should be enough room for

improvements if one allows hT to be data-dependent.

5.2 PCA vs. Iterative Procedures

To illustrate the advantage of iterative procedures compared to PCA estimators, we use simu-

lations where the data sets are generated as in the location-scale model of Example 4: Xit =

αift + gtǫit, where ft ∼ i.i.d N (0, 1), gt = eht with ht ∼ i.i.d N (0, 0.5) and ǫit ∼ i.i.d N (0, 1).

Ideally, we would expect the iterative procedures to capture the two factors ft and gt at τ 6= 0.5,

while the PCA estimators would only extract ft. Table 1 reports the values of R2 of regressing

ft and gt on the two estimated factors F̂PC , F̂QR and F̂SQR using PCA (columns 2 and 3), and

the iterative approaches (un-smoothed and smoothed version, columns 4 to 7) respectively. It

is evident that the factor gt, which only shifts the scales but not the means of X, is captured

by the iterative procedures at τ = 0.25, 0.75 but not by the PCA estimators. Also note that, as

discussed above, there is only one quantile factor ft at τ = 0.5 (i.e., at the median) due to the

symmetry of the distribution, so that the iterative procedures are unable to recover the factor

gt. In particular, we can observe that the smoothed version of the proposed iterative procedure

given the symmetry of the error term performs as well as the un-smoothed version in recovering

the quantile factor gt.

Table 1: PC v.s. Iteration Procedure

f ,F̂PC g,F̂PC f ,F̂QR g,F̂QR f ,F̂SQR g,F̂SQR

N,T = 20, τ = 0.25 .8940 .2705 .8350 .8370 .8868 .8251
N,T = 50, τ = 0.25 .9596 .1662 .9363 .9287 .9399 .9242
N,T = 100, τ = 0.25 .9802 .1058 .9621 .9626 .9617 .9604

N,T = 20, τ = 0.5 .8940 .2705 .9060 .2064 .9152 .2511
N,T = 50, τ = 0.5 .9596 .1662 .9540 .1535 .9536 .1362
N,T = 100, τ = 0.5 .9802 .1058 .9716 .1065 .9713 .0967

N,T = 20, τ = 0.75 .8940 .2705 .7592 .8347 .8684 .8338
N,T = 50, τ = 0.75 .9596 .1662 .9354 .9314 .9402 .9279
N,T = 100, τ = 0.75 .9802 .1058 .9638 .9624 .9639 .9601
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6 Empirical Applications

In this section we consider the empirical applications of our proposed estimation methods to

three financial datasets. The first two dataset consists of monthly returns of all US common

stocks from 1980 to 2014, and of all US mutual funds from 2000 to 2014. Both datasets are

provided by the Center for Research in Security Prices (CRSP). Having eliminated all those funds

with missing values in those periods, the resulting datasets have dimensions N = 475, T = 420

for the stocks and N = 2419, T = 180 for the mutual funds. The third dataset contains the

excess returns of the well-known one hundred portfolios constructed by Fama and French (1993,

FF henceforth)from 1985 to 2012 (N = 100, T = 324).

6.1 Applying the two-step approach

We first apply the eigenvalue-ratio estimator of Ahn and Horenstein (2013) to determine the

number of factors and find that r̂ = 1 for both stock returns and mutual fund returns and r̂ = 3

for the FF portfolios. The last result confirms FF’s well-known result that a large proportion of

the variance in the portfolio returns can be explained by three common factors.

Notice that, since the estimated factors for the stock and mutual fund returns are obviously

time varying, and that the estimated factors for the FF portfolios do not contain a constant

factor, we allow for a constant term along the regressors in the second-step QR. The estimated

N quantile factor loadings processes for the constant and the factors are plotted in Figures 6 for

the stock returns, Figure 7 for the mutual fund returns, and Figure 8 for FF portfolios. As can

be inspected, for both datasets, factor loadings for the constant term change across quantiles

but the factor loadings for the estimated factors seem to be rather stable. At first glance, this

would be consistent with common factors only having location-shift effects in the two datasets.

However, to formally justify this hypothesis, we need to implement a test for the constancy of

the quantile factor loading process for each of the returns in all three datasets.

6.2 Testing for constancy of QFM loadings

For simplicity, we focus on the case where the number of PCA factors is r = 1, as in the first two

datasets, though the following results can be easily generalized to models with a larger number

of factors. In line with our discussion in section 3.3.1, the aforementioned estimation results

lead us to consider the following particular specification of a location-scale shift model

Xit = λiFt + (1 + γiFt)ǫit.
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With E[ǫit|Ft] = 0, this is a conditional mean factor model with one common factor. In this

model, the hypothesis of constant factor loadings across quantiles is equivalent to

H0 : γi = 0.

Letting λ̂i(·) be the estimated factor loading process for individual i, then it is natural to

consider the process λ̂i(·) − λi. However, since λi is unknown, we base our test on the process

λ̂i(·) − λ̂i(0.5), where λ̂i(0.5) can be replaced by any consistent estimator of λi under H0. Let

us assume that:

Assumption 5. (i) The sequence {Ft} is strictly stationary and m-dependent with E|Ft|8 <∞,

and 1 + γif > 0 for all i and all f in the support of Ft; (ii) N
−1
∑N

i=1 λ
2
i → σ2λ > 0 as N → ∞;

(iii) The errors {ǫit} are i.i.d with CDF Fǫ and they are independent of the factor. The quantile

function Qǫ(τ) = inf{c : Fǫ(c) ≤ τ} is well defined, and the density function fǫ is bounded and

uniformly continuous.

Let F̂t be the PCA estimator of Ft, and define

θ̂i(τ) = [α̂i(τ), λ̂i(τ)]
′ = arg min

θ∈R2

T∑

t=1

ρτ (Xit − θ′(1, F̂t)) for all τ ∈ T .

Then, as in the proof of Theorem 2, we can show that under H0 and the above assumption

fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− h−1λi(·)) ⇒ B(·) in ℓ∞(T ),

where λi(τ) = λi + γiQǫ(τ), h = (N−1
∑N

i=1 λ
2
i )(T

−1
∑T

t=1 FtF̂t)/v, h0 = (E[F 2
t ])

−1/2, and v is

the largest eigenvalue of (NT )−1XX ′. It then follows that under H0

v̂T (·) = fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− λ̂i(1/2))

= fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− h−1λi) + fǫ(Qǫ(·)) · OP (1), (18)

where the first term on the right converges weakly to a Brownian bridge, and the second term

depends on the distribution of ǫit, which is usually unknown. Note that the second term,

which makes the standard Kolmogorov-Smirnov (KS) test supτ∈T |v̂T (τ)| invalid, is due to the

estimation of the unknown parameter λi, which is known in the literature as Durbin’s problem

(See Durbin (1973) and Koenker and Xiao 2002). Following Koenker and Xiao (2002), we use

the Khmaladze transformation to purge the estimation effects and get a nuisance-parameter free

test.
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To do so, let us define

g(τ) = [τ, fǫ[Qǫ(τ)]]
′ ġ(τ) = dg(τ)/dτ C(τ) =

∫ 1

τ
ġ(s)ġ(s)′ds,

and assume that

Assumption 6. (i)
∫ 1
0

∣∣(ḟǫ/fǫ)(Qǫ(τ))
∣∣2dτ <∞; (ii) the function (ḟǫ/fǫ)(Qǫ(τ)) is not a constant

in the neighbourhood of 1.

Consider the following transformed process

ṽT (τ) = Φg(v̂T ) = v̂T (τ)−
∫ τ

0

(
ġ′(s)C−1(s)

∫ 1

s
ġ(t)dv̂T (t)

)
ds. (19)

Essentially, the linear operator Φg projects out the functions belonging to the space of g(τ).

Formally, we have:

Proposition 1 (Koenker and Xiao (2002)). Under Assumptions 5 and 6, we have ṽT (·) =

Φg(v̂T )(·) ⇒ W(·) in ℓ∞(T ) under H0 as N,T → ∞, where W denotes the Brownian mo-

tion process. The results still holds if the function ġ is replaced by an estimator ġT satisfying

supτ∈T ‖ġT (τ)− ġ(τ)‖ = oP (1), and h
2
0(EFt)

2 is replaced by (T−1
∑T

t=1 F̂t)
2.

To give a computationally feasible formula for the test statistics, let τ1 = a0 < a1 < a2 <

· · · < am < am+1 = τ2 be a partition of T , and define

Ck =
m∑

j=k

ġ(aj)ġ(aj)
′(aj+1 − aj), Dk =

m∑

j=k

ġ(aj)(v̂T (aj+1)− v̂T (aj))
′ for k = 0, . . . ,m− 1,

ṽT (ah)
′ = v̂T (ah)

′ −
h∑

k=0

ġ(ak)
′C−1

k Dk(ak+1 − ak) for h = 0, . . . ,m− 1,

and we consider the following KS test statistics:

sup
0≤j≤m

‖ṽT (aj)− ṽT (a0)‖√
τ2 − τ1

.

In practice, we replace ġ(τ) by an uniform consistent estimator and replace h20(EFt)
2 by (T−1

∑T
t=1 F̂t)

2.

In light of Proposition 1, the test statistics converges in distribution to supτ∈[0,1] |W(τ)| by the

continuous mapping theorem. The numbers of variables (percentages in bracket) for which H0

cannot be rejected are reported in Table 2 for all three datasets, using critical values at 1%, 5%

and 10% significance levels. As can be observed, the null hypothesis of a simple location-shift

model cannot be rejected for almost 80% of the returns in all three datasets, whereas for the

remaining 20% there is evidence of a location-scale shift model with a single factor. However, it
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should be noticed that this conclusion is subject to a restricted specification whereby only the

same common factors are allowed to affect mean and variance. If this were not the case, then

an approach combining the two-step and the iterative procedures would be required, an issue to

which we devote the next subsection.

Table 2: Testing for constant quantile factor loading processes.

Critical Values 10%(1.94) 5%(2.22) 1%(2.80)

Common Stocks 303(70.63%) 341(79.49%) 382(89.04%)
Mutual Funds 1894(80.05%) 1994(84.28%) 2086(88.17%)
FF portfolios 266(82.10%) 287(88.58%) 295(91.04%)

6.3 Iterative Approach and Model Specification Checks

As discussed in Section 3.3, the two-step approach only works when the first-step PCA estimators

of the factors are consistent for the space of all quantile factors. Yet, it there were extra quantile

factors that cannot be consistently estimated by PCA estimators, then the estimated QFL

process may not be consistent due to omitted factors (see Angrist et al 2006 for more details),

and hence the tests based on such estimates may be misleading. As mentioned earlier, in the

specific case of location-shift factor models, such as in Example 1, where the omitted factor

happens to be a constant, the problem can be easily fixed by adding an intercept among the

regressors in the second-step QR, as it was done in Section 3.1. However, when the missing

factor is not a constant, there is no easy solution and one has to rely on the iterative approach

discussed in Section 4 to recover all the quantile factors.

More importantly, in the spirit of Hausman’s test, the iterative approach provides a simple

heuristic way of testing whether the two-step approach works by checking whether the PCA

estimators miss any factors other than the constant term. To simplify the discussions, let F̂PC

and F̂QR(τ) denote the estimated factors using PCA and the iterative approach at τ , respectively.

First, note that, if Assumptions 1 and 4 provide reasonable approximations of the true

model, F̂PC should be close to the space of the location-shift factors (or mean factors). These

should also be close to a subspace of F̂QR(τ), because the quantile factors may also include

some additional factors (such as the constant factor or scale-shift factors). Therefore, running

linear regressions of F̂PC on F̂QR(τ) should yield a R2 close to 1. Second, F̂QR(τ) should be

close to the space of all quantile factors, including the factors that cannot be captured by F̂PC .

Therefore, if the only factor missed by F̂PC is a time-invariant one, running linear regressions

of a constant factor on F̂QR(τ) should also result in R2 close to 1 for most τ´s.6

6Notice that we say for most rather than for all τ́ s because, e.g., in Example 4 there is no constant factor at
τ = 0.5.
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Our model checks rely on these two R2´s. The lessons to be drawn from these two statistics

would be as follow: (i) if the first R2 is small for many τ´s, the validity of Assumptions 1 and

4 should be questioned; (ii) if the first R2 is close to 1 for all τ´s, but the second R2 is low for

many τ´s, then this would point out to the existence of extra time-varying quantile factors that

are also those affecting the mean; and (iii) if both sets of R2´s are quite smaller than 1, this

would support a location-scale shift model with different factors. 7

To provide some simulation results on the finite-sample behaviour of the two R2´s, we first

generate a simple location-shift factor model as in Example 1 with N = T = 200, where αi, ft

and ǫit are all i.i.d with standard normal distribution, and plot the two R2´s across τ́s in the

upper left panel of Figure 9. Recalling that in this case the PCA estimator consistently estimates

the common factors ft, but that a constant appears as an extra quantile factor for all τ´s except

τ = 0.5, we can observe that the first set of R2´s (red line) is close to 1 for all τ = 0.10, . . . , 0.90,

while the second R2 (blue line) is also close to 1, except around a few quantiles close to the

median (i.e., τ ∈ (0.45, 0.55)). The reason for why the second set of R2´s differs from 1 in this

neigbourhood of τ = 0.5 (where recall that it should be zero given the symmetric distribution

of the error terms) is that the QFL for the constant factor in our DGP, Qǫ(τ), at τ´s close to

0.5 happen to be small compared to the QFL for the time-varying factor ft. For example, the

modulus of Qǫ(τ) at the two quantiles τ = 0.45, 0.55 is only |Qǫ(τ)| = 0.1257, quite below the

factor loadings of ft. As a result, ft is a relatively strong factor and the constant is a relatively

weak factor. This explains why in finite samples, while ft can be spanned by F̂QR, the constant

factor cannot be spanned such estimated factors. Yet, we have checked that for larger sample

sizes this distortion tends to vanish.

Using as a benchmark the simulated behaviour of the two R2´s above, we next report their

empirical counterparts for each of our three financial datasets to check whether there are extra

quantile factors of the returns that the PCA estimators are unable to capture. In the iterative

approach we set r = 2 for the stock and mutual fund returns, and r = 4 for the FF portfolio

returns.

The two sets of R2´s for each dataset are plotted in the remaining three panels of Figure

9. As can be inspected, the first set of R2´s (red line) for the mutual fund returns and FF

portfolio returns (lower left and right panels, respectively) are both close to 1 for all τ´s. As

for the second set of R2´s (blue line), they also exhibit a similar pattern as in the benchmark

models for the mutual funds, with values close to 1 at tail quantiles and very low values around

τ = 0.5. Hence, this indicates that (i) Assumptions 1 and 4 are likely to satisfied for these

returns, so that both F̂PC and F̂QR are consistent for the space of the location-shift factors.

7It could also be the case that all the quantile factors are also location-shift factors which can be consistently
estimated by F̂PC . But this case is unlikely in our applications because it implies that in the two-step approach
the estimated quantile factor loading process for the constant are all 0, which is obviously at odds with what is
shown in Figures 6 to 8.

24



This, however, is not the case for the FF portfolio returns where, despite having a a similar

”inverted U” pattern, the values of the second set of R2´s happen to be far below 1. Thus, since

the first set of R2´s is close to 1 but the second set is quite smaller than 1, we conclude that a

location-scale shift model sharing the same set of common factors is the preferred specification

for these returns. Finally, fairly different findings hold for the stock returns (upper right panel)

where the first set of R2´s has a ”U” shape, rather than being all around 1, while the second set

has an ”inverted U” shape with values quite below 1. Hence, the combination of both results

point out that either Assumption 1 or Assumption 4 fail to be satisfied for these returns and,

as a result, that neither F̂PC nor F̂QR are close the true factor space.

Summing up, the empirical evidence presented above indicates that: (i) the extra factor

for the mutual fund returns, is just the constant factor, so that the two-step approach works

reasonably well for this dataset; (ii) the extra factors for the FF portfolio returns are the same

as those affecting the mean, so that PCA allows to consistently estimate these factors; and (iii)

the extra factors for the stock returns differ from those affecting the mean and, therefore, that

such factors cannot be consistently estimated by PCA.

7 Conclusions

In this paper we propose the concept of quantile factor models (QFM) and their estimation and

inference. We start proposing a two-step procedure to estimate the common factors and the

quantile factor loading (QFL) processes. At a first pass, a useful weak convergence result for the

entire estimated QFL processes is obtained. This result provides the basis for testing various

relevant hypotheses about the effects of the common factors on the distributions of the observed

variables, as illustrated in the empirical applications.

Yet, when there are common factors that affect the quantiles but not the means, the two-step

procedure results in inconsistent estimators due to omitted variables. This happens because the

PCA estimators in the first step cannot capture all the relevant factors for the second-step QR.

To solve this problem, we propose an iterative procedure that can successfully extract not only

the mean factors but also the quantile factors. Consistency of these estimators is proven for a

smoothed version of the iteration procedure.

There still remains several important questions which deserve further research. Firstly, when

the two-step procedure works, the number of quantile factors could be consistently estimated

using many existing methods. Yet, it is important to have a consistent estimator for the number

of quantile factors when the two-step procedure fails (as in Example 4). Second, while our iter-

ative procedure can recover factors that cannot be captured by PCA estimators, it is interesting

to see how these extra quantile factors can improve macro forecasts compared to current prac-

tices based exclusively on factors estimated by PCA. Lastly, a very challenging but interesting
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problem is to derive the asymptotic distributions of the estimated factors stemming from the

iterative procedure.

A Proof of the Theorems

A.1 Proof of Theorem 1

Lemma 1. Define CNT = min[N, T ], the following results hold under Assumption 1:

(i) T−1
∑T

t=1 ‖F̂t −H ′
NTFt‖2 = OP (C

−1
NT ).

(ii) ‖HNT −H0‖ = oP (1).

Proof. Since the errors {eit} defined in (6) are uncorrelated across i and t and E‖Ft‖4 <∞, Assumptions

C1 to C4 of Bai and Ng (2002) are trivially satisfied (Note that we don’t need the E|eit|8 < ∞, which

are only required to consistently estimate the number of factors). Moreover, By Assumption 1(i) we also

have T−1FtF
′
t − ΣF = oP (1) by applying the law of large numbers, thus Assumptions A and B of Bai

and Ng (2002) are also satisfied by our Assumptions 1(i) and (iii).

However, Assumption C5 of Bai and Ng (2002) is not satisfied by our model. Note that this assump-

tion is only needed in proving the following result (we adopt the same notation for convenience)8:

T−1
T∑

t=1

bt = OP (1/N) where bt = T−2

∥∥∥∥∥

T∑

s=1

F̂sζst

∥∥∥∥∥

2

and ζst = N−1
N∑

i=1

(
eiteis − E[eiteis]

)
.

Next, we show that under our Assumption 1, T−1
∑T

t=1 bt = OP (C
−1
NT ) and thus part (i) of the desired

result, which is Theorem 1 of Bai and Ng (2002), still holds. Note that

T∑

t=1

bt = T−2
T∑

t=1

∥∥∥∥∥

T∑

s=1

F̂sζst

∥∥∥∥∥

2

≤
(

1

T

T∑

s=1

‖F̂‖2s

)
1

T

T∑

t=1

T∑

s=1

ζ2st = r · 1
T

T∑

t=1

T∑

s=1

ζ2st,

and

1

T

T∑

t=1

T∑

s=1

ζ2st =
1

N

1

T

T∑

t=1

T∑

s=1,s6=t

[
1√
N

N∑

i=1

(
eiteis − E[eiteis]

)
]2

+
1

T

T∑

t=1

[
1

N

N∑

i=1

(
e2it − E[e2it]

)
]2

(20)

Note that under our assumptions E[eiteisejtejs] − E[eiteis]E[ejtejs] = 0 for any i 6= j and t 6= s. Hence,

for all t 6= s,

E

[
1√
N

N∑

i=1

(
eiteis − E[eiteis]

)
]2

≤ 1

N

N∑

i=1

E[e2ite
2
is] ≤ max

1≤i≤N
E[e4it] ≤ E‖Ft‖4 · max

1≤i≤N
E‖uit‖4 <∞

since E‖Ft‖4 < ∞ by Assumption 1(i), and by Assumption 1(iii) there exists a M < ∞ such that

8In Bai and Ng (2002) the authors consider the estimator F̃t = V −1

NT F̂t, which does not affect our results
because VNT →p V and thus ‖VNT ‖ = OP (1).
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E‖uit‖p < M for all i and for any finite p > 0 . So the first part on the right hand side of (20) is

OP (T/N). And when t = s,

E

[
1

N

N∑

i=1

(
e2it − E[e2it]

)
]2

≤ 1

N2

N∑

i=1

N∑

j=1

E[e2ite
2
jt] ≤ E‖Ft‖4 · max

1≤i≤N
E‖uit‖4 <∞

for all t as shown above. Then the second part on the right hand side of (20) is OP (1). In sum, we have

T−1
∑T

t=1 bt = OP (1/N) +OP (1/T ) = OP (C
−1
NT ), and the other parts of the proof is similar to those in

Bai and Ng (2002). Part (ii) Follows directly from Proposition 1 of Bai (2003) and Assumption 1(iv).

Another direct consequence of (i) is that

max
1≤t≤T

∥∥∥T−1
T∑

s=1

F̂sζst

∥∥∥ =
√

max
1≤t≤T

bt ≤

√√√√
T∑

t=1

bt = OP (
√
T/

√
N) +OP (1).

By a proof similar to that of Proposition 2 in Bai (2003), we can obtain the following useful result:

max
1≤t≤T

‖F̂t −H ′
NTFt‖ = OP (T

−1/2C
−1/2
NT ) +OP (αT /T ) +OP (

√
T/

√
N) +OP (1), (21)

where max1≤t≤T ‖Ft‖ = OP (αT ).

Proof of Theorem 1: Define D = {D ∈ Rr×r : D > 0 and ‖D‖ < ∞}, Q∞(τ, λ) = E[ρτ (Xit −
λ′Ft)] and ϕτ (u) = 1{u < 0} − τ . Under Assumption 1(vi) we have for each τ in T , ∂Q∞(τ, λ)/∂λ =

E[ϕτ (Xit − λ′Ft)Ft] and ∂Q∞(τ, λ)/∂λ∂λ′ = J(λ). From (??) we have ∂Q∞(τ, λi(τ))/∂λ = E[ϕτ (Xit −
λi(τ)

′Ft)Ft] = 0, thus by Assumption 1(v) λi(τ) uniquely minimizes Q∞(τ, λ) uniformly over T . It then

follows that D−1λi(τ) uniquely minimizes Q∞,D(τ, λ) = E[ρτ (Xit − λ′D′Ft)] uniformly over T for any

D ∈ D.

Define QT,D(τ, λ) = T−1
∑T

t=1 ρτ (Xit − λ′D′Ft). Notice that the function (τ, λ) 7→ ρτ (x − λ′f) is

continuous for each x ∈ X and f ∈ F , and |ρτ (Xit − λ′H ′
0Ft)| ≤ C · supλ∈A ‖λ‖ · ‖H0‖ · ‖Ft‖ for some

constant C <∞ for all (τ, λ) ∈ T ×A. Since E‖Ft‖ <∞ and A is compact by Assumption 1, it follows

that

sup
(τ,λ)∈T ×A

‖QT,H0(τ, λ)−Q∞,H0(τ, λ)‖ = oP (1) (22)

by invoking Lemma 2.4 of Newey and MaFaden (1994).

Define Q̂T (τ, λ) = T−1
∑T

t=1 ρτ (Xit −λ′F̂t). By definition, λ̂i(τ) is the minimizer of Q̂T (τ, λ) over A
for each τ . Note that ρτ (u − v)− ρτ (u) = vψτ (u) +

∫ v

0 (1{u < s} − 1{u < 0})ds, so9

|Q̂T (τ, λ) −QT,H0(τ, λ)| ≤ C · ‖λ‖ · T−1
T∑

t=1

‖F̂t −H ′
0Ft‖ ≤ C · ‖λ‖ ·

√√√√T−1

T∑

t=1

‖F̂t −H ′
0Ft‖2

for some constant C > 0. By Lemma 1 we have T−1
∑T

t=1 ‖F̂t −H ′
0Ft‖2 ≤ T−1

∑T
t=1 ‖F̂t −H ′

NTFt‖2 +
‖HNT−H0‖2·T−1

∑T
t=1 ‖Ft‖2 = oP (1), it then follows that sup(τ,λ)∈T ×A |Q̂T (τ, λ)−QT,H0(τ, λ)| = oP (1).

9It then follows that |ρτ (u− v)− ρτ (u)| ≤ |v| · |1{u < 0} − τ |+ |v| · 1{|u| < |v|} ≤ 3|v|.
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The latter result together with (22) imply: sup(τ,λ)∈T ×A |Q̂T (τ, λ) − Q∞,H0(τ, λ)| = oP (1). Since λ̂i(τ)

is the minimizer of Q̂T (τ, λ) by definition, and H−1
0 λi(τ) is the unique minimizer of Q∞,H0(τ, λ) as

shown above, it then follows from Lemma B.1 of Chernozhukov and Hansen (2006) that supτ∈T ‖λ̂i(τ)−
H−1

0 λi(τ)‖ = oP (1) for all i. Moreover,

sup
τ∈T

‖λ̂i(τ) −H−1
NTλi(τ)‖ ≤ sup

τ∈T
‖λ̂i(τ) −H−1

0 λi(τ)‖ + ‖H−1
NT −H−1

0 ‖ · sup
τ∈T

‖λi(τ)‖ = oP (1).

�

A.2 Proof of Theorem 2

We first prove a key result about the uniform rate of convergence of the estimated factors:

Lemma 2. Suppose Assumptions 1 and 2 hold, then:

max
1≤t≤T

‖F̂t −H ′
NTFt‖ = OP (T

1/8/
√
N) +OP (T

−5/8) = oP (T
−1/2).

In our model E[e2ite
2
jt]−E[e2it]E[e

2
jt] 6= 0 for i 6= j, so the above result the our proof is slightly different

from Bai and Ng (2008), who show that max1≤t≤T ‖F̂t −H ′
NTFt‖ = OP (T

1/8/
√
N) +OP (T

−7/8) .

Proof. Define the LP -norm of any random variable Z by ‖Z‖p =
(
E|Z|p

)1/p
. For any random variables

Z1, Z2, . . . , we have

∥∥∥ max
1≤t≤T

Zt

∥∥∥
p
≤
∥∥∥ max

1≤t≤T
|Zt|

∥∥∥
p
=
(
E

[
max
1≤t≤T

|Zt|p
])1/p

≤
(

T∑

t=1

E|Zt|p
)1/p

≤ T 1/p · max
1≤t≤T

‖Zt‖p. (23)

A immediate result of this maximal inequality is that max1≤t≤T ‖Ft‖ = OP (T
1/8) if E‖Ft‖8 <∞.

Following Bai (2003), we have

F̂t −H ′
NTFt = V −1

NT

( 1

T

T∑

s=1
s6=t

F̂sγst

︸ ︷︷ ︸
at

+
1

T
F̂tγtt

︸ ︷︷ ︸
bt

+
1

T

T∑

s=1

F̂sηst

︸ ︷︷ ︸
ct

+
1

T

T∑

s=1

F̂sξst

︸ ︷︷ ︸
dt

)
, (24)

where

γst =
1

N

N∑

i=1

eiseit, ηst = F ′
sΛ

′et/N, ξst = F ′
tΛ

′es/N,

et = [e1t, . . . , eNt]
′, and VNT is defined as in Section 3.1. Define uit = λi(Uit)− λi, note that under our

assumptions, eit = u′itFt are uncorrelated across i and t, and E|eit|p ≤ E‖uit‖p · E‖Ft‖p for any finite p.

Moreover, E‖uit‖p < ∞ for all i and any finite p because Uit are uniformly distributed over [0, 1] and A
is compact by our assumptions.
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First, by adding and subtracting terms,

at =
1

T

T∑

s=1
s6=t

(F̂s −H ′
NT )γst

︸ ︷︷ ︸
a1t

+H ′
NT

1

T

T∑

s=1
s6=t

Fsγst

︸ ︷︷ ︸
a2t

.

For a1t, we have

‖a1t‖ ≤
(

1

T

T∑

s=1

‖F̂s −H ′
NTFs‖2

)1/2(
1

T

T∑

s6=t

γ2st

)1/2

= OP (C
−1/2
NT )

(
1

T

T∑

s6=t

γ2st

)1/2

,

and since E[eiteitejtejs] = 0 for t 6= s and j 6= i,

E

[
N

T

T∑

s6=t

γ2st

]2
= E

{
1

T

T∑

s6=t

[
N−1/2

N∑

i=1

eiseit

]2}2

≤ max
1≤s≤T,s6=t

E

[
N−1/2

N∑

i=1

eiseit

]4
,

It is easy to see that for all s 6= t,

E

[
N−1/2

N∑

i=1

eiseit

]4
≤ C · max

1≤i≤N
E[e8it] ≤ C · E‖Ft‖8 · max

1≤i≤N
E[u8it] ≤ ∞

for some finite C by assumptions. Then by the maximal inequality (23) we have max1≤t≤T ‖a1t‖ =

OP (C
−1/2
NT T 1/4N−1/2). For a2t, note that

1

T

T∑

s=1
s6=t

Fsγst =
1√
NT

(
1√
NT

T∑

s=1,s6=t

N∑

i=1

Fseiseit

)

and

E

(
1√
NT

T∑

s=1,s6=t

N∑

i=1

Fseiseit

)2

≤ 1

NT

T∑

s=1,s6=t

N∑

i=1

E
[
‖Fs‖2e2ise2it

]
≤ max

1≤i≤N
E‖uit‖4 · E‖Ft‖6 <∞

for all t by assumption. Then by the maximal inequality (23) we have max1≤t≤T ‖a2t‖ = OP (N
−1/2). In

sum, we have max1≤t≤T ‖at‖ = OP (N
−1/2) by Assumption 2.

Second, by adding and subtracting terms,

bt = T−1H ′
NTFt

(
1

N

N∑

i=1

e2it

)

︸ ︷︷ ︸
b1t

+T−1(F̂t −H ′
NTFt)

(
1

N

N∑

i=1

e2it

)

︸ ︷︷ ︸
b2t

.

Since

E

[
1

N

N∑

i=1

e2it

]4
=

1

N4

N∑

i=1

N∑

j=1

N∑

p=1

N∑

q=1

E
[
e2ite

2
jte

2
pte

2
qt

]
≤ max

1≤i≤N
E(e8it) ≤ E‖Ft‖8 · max

1≤i≤N
E‖uit‖8 <∞
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for all t, then by the maximal inequality (23)

max
1≤t≤T

‖b1t‖ ≤ T−1 max
1≤t≤T

‖Ft‖ ·OP (T
1/4) = OP (T

−5/8)

because E‖Ft‖8 <∞ implies max1≤t≤T ‖Ft‖ = OP (T
1/8). Moreover, it follows from (21) that max1≤t≤T ‖b2t‖ =

T−1OP (1)OP (T
1/4) = OP (T

−3/4). In sum, we have max1≤t≤T ‖bt‖ = OP (T
−5/8).

Third,

ct = T−1
T∑

s=1

(F̂s −H ′
NTFs)ηst

︸ ︷︷ ︸
c1t

+H ′
NTT

−1
T∑

s=1

Fsηst

︸ ︷︷ ︸
c2t

.

Note that T−1
∑T

s=1 Fsηst = N−1/2
(
T−1

∑T
s=1 FsF

′
s

)(
N−1/2

∑N
i=1 λieit

)
, and it is easy to see that

E
(
N−1/2

∑N
i=1 λieit

)8
< ∞ for all t under our assumptions, then by the maximal inequality (23) we

have max1≤t≤T ‖c2t‖ = OP (T
1/8/

√
N). Moreover,

‖c1t‖ ≤
(
T−1

T∑

s=1

η2st

)1/2(
T−1

T∑

s=1

‖F̂s −H ′
NTFs‖2

)1/2

,

and

T−1
T∑

s=1

η2st = T−1
T∑

s=1

(F ′
sΛ

′et/N)2 ≤ N−1‖Λ′et/
√
N‖2

(
T−1

T∑

s=1

‖Fs‖2
)
,

since E‖Λ′et/
√
N‖8 <∞ for all t as shown above, by the maximal inequality (23) we have max1≤t≤T |T−1

∑T
s=1 η

2
st| =

OP (T
1/4/N), and thus max1≤t≤T ‖c1t‖ = OP (T

1/8/
√
N)oP (1). In sum, we have max1≤t≤T ‖ct‖ =

OP (T
1/8/

√
N).

Finally, by Bai (2003)

‖dt‖ ≤ 1√
N

(
T−1

T∑

s=1

‖F̂s −H ′
NTFs‖2

)1/2(
T−1

T∑

s=1

∥∥∥Λ′es/
√
N
∥∥∥
2
)1/2

‖Ft‖

+
1√
NT

∥∥∥∥∥
1√
NT

T∑

s=1

N∑

i=1

Fsλ
′
ieis

∥∥∥∥∥‖Ft‖.

It is easy to see that T−1
∑T

s=1

∥∥∥Λ′es/
√
N
∥∥∥
2

and 1√
NT

∑T
s=1

∑N
i=1 Fsλ

′
ieis are both OP (1) by the stated

assumptions, and since max1≤t≤T ‖Ft‖ = OP (T
1/8), we have max1≤t≤T ‖dt‖ = OP (N

−1/2C
−1/2
NT T 1/8) +

OP (N
−1/2T−1/2T 1/8) = OP (N

−1/2T−3/8). Combining all above results gives: max1≤t≤T ‖F̂t−H ′
NTFt‖ =

OP (T
1/8/

√
N) +OP (T

−5/8).

To simply the notations, we suppress the subscription i and writeXt, λ(τ), λ̂(τ) instead ofXit, λi(τ), λ̂i(τ).

For any D ∈ D, define

ST,D(τ, λ) = T−1
T∑

t=1

ϕτ (Xt − λ′D′Ft)D
′Ft, S∞,D(τ, λ) = E[ϕτ (Xt − λ′D′Ft)D

′Ft],
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and GT (τ, λ,D) =
√
T [ST,D(τ, λ) − S∞,D(τ, λ)].

The following lemmas hold under Assumptions 1 and 2:

Lemma 3. Define ŜT (τ, λ) = T−1
∑T

t=1 ϕτ (Xt − λ′F̂t)F̂t, then supτ∈T ‖
√
T ŜT (τ, λ̂(τ))‖ = oP (1).

Proof. First, we have

sup
1≤t≤T

‖F̂t‖ ≤ sup
1≤t≤T

‖Ft‖ · ‖HNT ‖+ sup
1≤t≤T

‖F̂t −HNTFt‖,

so sup1≤t≤T ‖F̂t‖ = oP (T
1/2) because sup1≤t≤T ‖Ft‖ = OP (T

1/8) and sup1≤t≤T ‖F̂t−HNTFt‖ is oP (T−1/2)

by Lemma 2. Then it follows by Theorem 2.1 of Koenker (2005) that ‖ŜT (τ, λ̂i(τ))‖ ≤ r·sup1≤t≤T ‖F̂t‖/T+
OP (T

−1) = oP (T
−1/2) for all τ ∈ T .

Lemma 4. supτ∈T ‖GT (τ, λ̂(τ), HNT )−GT (τ,H
−1
0 λ(τ), H0)‖ = oP (1).

Proof. Define the empirical process

G̃T (τ, θ,D) =
1√
T

T∑

t=1

{
ϕτ (Xt − θ′Ft)D

′Ft − E[ϕτ (Xt − θ′Ft)D
′Ft]
}
,

and the compact set Θ = {θ ∈ Rk : θ = Dλ, λ ∈ A, D ∈ D}. By Theorems 2 and 3 of Andrews (1994),

it is easy to see that the class of functions {(1{Xt < θ′Ft} − τ)D′Ft : τ ∈ T , θ ∈ Θ, D ∈ D} satisfies the

Pollard’s entropy condition with an square integrable envelop supD∈D ‖D‖ · ‖Ft‖, thus by Theorem 1 of

Andrews (1994), G̃T (τ, θ,D) is ρ-stochastic equicontinuous with the pseudometric:

ρ[(τ1, θ1, D1), (τ2, θ2, D2)] =

√
max
1≤j≤r

E

(
ϕτ1(Xt − θ′1Ft)D

(j·)
1 Ft − ϕτ2(Xt − θ′2Ft)D

(j·)
2 Ft

)2

where D(·j) denotes the jth column of D. Note that

ρ[(τ1, θ1, D1), (τ2, θ2, D2)]

≤ max
j=1,...,r

√
τ2E[(D

(j·)
1 −D

(j·)
2 )Ft]2 + max

j=1,...,r

√
E[1{Xt < θ1Ft}(D(j·)

1 −D
(j·)
2 )Ft]2

+ max
j=1,...,r

√
E[(1{Xt < θ1Ft} − 1{Xt < θ2Ft})D(j·)

2 Ft]2,

and the first two terms on the right-hand side of above inequality are bounded by C ·‖D1−D2‖·
√

E‖Ft‖2
for some C > 0. For the third term, by Hölder’s inequality and Assumption 1(vi) we have

max
j=1,...,r

√
E[(1{Xt < θ1Ft} − 1{Xt < θ2Ft})D(j·)

2 Ft]2

≤ max
j=1,...,r

(E|1{Xt < θ1Ft} − 1{Xt < θ2Ft}|)
ǫ

2(2+ǫ) (E[D
(j·)
2 Ft]

2+ǫ)
1

2+ǫ

≤ ‖D2‖ · (E‖Ft‖2+ǫ)
1

2+ǫ · (E‖Ft‖)
ǫ

2(2+ǫ) · (f̄ · ‖θ1 − θ2‖)
ǫ

2(2+ǫ) .
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Then by uniform consistency of λ̂(τ) and Lemma 1(ii),

δ = sup
τ∈T

ρ[(τ, λ̂(τ)′H ′
NT , HNT ), (τ, λ(τ)

′, H0)] = oP (1),

and thus

sup
τ∈T

‖GT (τ, λ̂(τ), HNT )−GT (τ,H
−1
0 λ(τ), H0)‖

= sup
τ∈T

‖G̃T (τ, λ̂(τ)
′H ′

NT , HNT )− G̃T (τ, λ(τ)
′, H0)‖

≤ sup
ρ[(τ1,θ1,D1),(τ2,θ2,D2)]≤δ

‖G̃T (τ1, θ1, D1)− G̃T (τ2, θ2, D2)‖

which is oP (1) by the stochastic continuity of G̃T (τ, θ,D).

Lemma 5. Let r = [r1, . . . , rT ], where rt is a r × 1 vector of real numbers for each t. For any D ∈ D
and λ ∈ A, define:

UT,D(λ, r) =
1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < 0} − 1{Xt − λ′D′Ft < λ′rt}

]
D′Ft

}
,

then supλ∈A

∥∥∥UT,HNT
(λ, r)|rt=F̂t−H′

NT
Ft

∥∥∥ = oP (1).

Proof. Let D(·j) be the jth column of D, and let UT,D,j be the jth element of UT,D, i.e.,

UT,D,j(λ, r) =
1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < 0} − 1{Xt − λ′D′Ft < λ′rt}

]
D(·j)Ft

}
,

then it suffices to show that supλ∈A

∥∥∥UT,HNT ,j(λ, r)|rt=F̂t−H′

NT
Ft

∥∥∥ = oP (1) for each j = 1, . . . , r. We can

write:

−UT,D,j(λ, r) = U1
T,D,j(λ, r) + U2

T,D,j(λ, r),

where

U1
T,D,j(λ, r) =

1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < λ′rt} − 1{Xt − λ′D′Ft < 0}

]
D(·j)Ft1{D(·j)Ft ≤ 0}

}
,

U2
T,D,j(λ, r) =

1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < λ′rt} − 1{Xt − λ′D′Ft < 0}

]
D(·j)Ft1{D(·j)Ft > 0}

}
.

Define

lr,λ,T = min
1≤t≤T

λ′rt and ur,λ,T = max
1≤t≤T

λ′rt,

and

R1
T,D,j(λ, γ) =

1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < γ} − 1{Xt − λ′D′Ft < 0}

]
D(·j)Ft1{D(·j)Ft ≤ 0}

}
,
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R2
T,D,j(λ, γ) =

1√
T

T∑

t=1

{[
1{Xt − λ′D′Ft < γ} − 1{Xt − λ′D′Ft < 0}

]
D(·j)Ft1{D(·j)Ft > 0}

}
,

then we have ∥∥U1
T,D,j(λ, r)

∥∥ ≤ max
[∥∥R1

T,D,j(λ, ur,λ,T )
∥∥,
∥∥R1

T,D,j(λ, lr,λ,T )
∥∥
]
,

∥∥U2
T,D,j(λ, r)

∥∥ ≤ max
[∥∥R2

T,D,j(λ, lr,λ,T )
∥∥,
∥∥R2

T,D,j(λ, ur,λ,T )
∥∥
]
.

Adding and subtracting terms, we have

R1
T,D,j(λ, γ)

=
1√
T

T∑

t=1

{
1{Xt − λ′D′Ft < γ}D(·j)Ft1{D(·j)Ft ≤ 0} − E

[
1{Xt − λ′D′Ft < γ}D(·j)Ft1{D(·j)Ft ≤ 0}

]}

︸ ︷︷ ︸
WT,D(λ′D′,γ)

− 1√
T

T∑

t=1

{
1{Xt − λ′D′Ft < 0}D(·j)Ft1{D(·j)Ft ≤ 0} − E

[
1{Xt − λ′D′Ft < 0}D(·j)Ft1{D(·j)Ft ≤ 0}

]}

︸ ︷︷ ︸
WT,D(λ′D′,0)

+
√
T · E

[
1{Xt − λ′D′Ft < γ}D(·j)Ft1{D(·j)Ft ≤ 0}

]
−
√
T · E

[
1{Xt − λ′D′Ft < 0}D(·j)Ft1{D(·j)Ft ≤ 0}

]

︸ ︷︷ ︸
RD(λ,γ)

.

For simplicity, write gt = D(·j)Ft. First, note that the class of functions

{(θ, γ) 7→ 1{Xt − θ′Ft < γ} · gt1{gt ≤ 0}}

satisfies Pollard’s entropy condition with envelop function ‖gt‖ and E[|gt|2+ǫ] <∞ according to Theorem

3 of Andrews (1994), then by theorem 1 of Andrews (1994) the empirical process WT,D defined as above

is d-stochastic equicontinuous, where

d[(θ1, γ1), (θ2, γ2)] =

√
E
∣∣[1{Xt − θ′1Ft < γ1} − 1{Xt − θ′2Ft < γ2}]gt1{gt ≤ 0}

∣∣2

≤ ‖D‖ · (E‖Ft‖2+ǫ)
1

2+ǫ ·
[
f̄(|γ1 − γ2|+ ‖θ1 − θ2‖ · E‖Ft‖)

] ǫ
2(2+ǫ)

by Hölder’s inequality. Second, we have

sup
λ∈A

|ur,λ,T | ≤ sup
λ∈A

∣∣∣ min
1≤t≤T

λ′rt
∣∣∣ ≤ sup

λ∈A
max
1≤t≤T

∣∣∣λ′rt
∣∣∣ ≤ sup

λ∈A
‖λ‖ · max

1≤t≤T
‖rt‖,

and thus

sup
λ∈A

|ûλ,T | ≤ sup
λ∈A

‖λ‖ · max
1≤t≤T

‖F̂t −H ′
NTFt‖ = oP (1)

by Lemma 2, where ûλ,T = ur,λ,T |r=F̂−H′

NT
F . Therefore, supλ∈A d[(λ

′D′, ûλ,T ), (λ′D′, 0)] = oP (1) by

the above inequality about d, and supλ∈A
∣∣WT,D(λ′D′, ûλ,T ) −WT,D(λ′D′, 0)

∣∣ = oP (1) by d-stochastic

equicontinuity of WT,D.
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Next, it is easy to see that |RD(λ, γ)| ≤ f̄ · ‖D‖ · E‖Ft‖ ·
√
T |γ|, and so

sup
λ∈A

|RD(λ, ûλ,T ))| ≤ f̄ · ‖D‖ · sup
λ∈A

‖λ‖ · E‖Ft‖ ·
√
T max

1≤t≤T
‖F̂t −H ′

NTFt‖ = oP (1)

by Lemma 2. As a result,

sup
λ∈A

∣∣R1
T,D,j(λ, ûλ,T )

∣∣ ≤ sup
λ∈A

∣∣WT,D(λ′D′, ûλ,T )−WT,D(λ′D′, 0)
∣∣+ sup

λ∈A
|RD(λ, ûλ,T ))| = oP (1),

and we can show that supλ∈A
∣∣R1

T,D,j(λ, l̂λ,T )
∣∣ = oP (1) in a similar way, which implies that

sup
λ∈A

∣∣U1
T,D,j(λ, r)

∣∣
rt=F̂t−H′

NT
Ft

= oP (1).

Similarly, it can be shown that supλ∈A
∣∣U2

T,D,j(λ, r)
∣∣
rt=F̂t−H′

NT
Ft

= oP (1), and finally we can conclude

that

sup
λ∈A

∣∣UT,D,j(λ, r)
∣∣
rt=F̂t−H′

NT
Ft

≤ sup
λ∈A

∣∣U1
T,D,j(λ, r)

∣∣
rt=F̂t−H′

NT
Ft
+sup

λ∈A

∣∣U2
T,D,j(λ, r)

∣∣
rt=F̂t−H′

NT
Ft

= oP (1),

and the desired result follows by letting D = HNT .

Lemma 6. For any D ∈ D, define

ĤT,D(τ, λ) =
√
T [ST,D(τ, λ)− ŜT (τ, λ)] =

1√
T

T∑

t=1

{
ϕτ (Xt − λ′D′Ft)D

′Ft − ϕτ (Xt − λ′F̂t)F̂t

}
,

then supτ∈T
∥∥ĤT,HNT

(τ, λ̂(τ))
∥∥ = oP (1).

Proof. Adding and subtracting terms, for any D ∈ D, we have:

ĤT,HNT
(τ, λ) =

1√
T

T∑

t=1

{
ϕτ (Xt − λ′H ′

NTFt)D
′Ft − ϕτ (Xt − λ′F̂t)F̂t

}

=
1√
T

T∑

t=1

{[
1{Xt < λ′H ′

NTFt} − 1{Xt < λ′F̂t}
]
H ′

NTFt

}
− 1√

T

T∑

t=1

ϕτ (Xt − λ′F̂t)(F̂t −H ′
NTFt)

= UT,HNT
(λ, r)|rt=F̂t−H′

NT
Ft

− 1√
T

T∑

t=1

ϕτ (Xt − λ′F̂t)(F̂t −H ′
NTFt),

it then follows from Lemma 2 and 5 that

sup
τ∈T

∥∥∥ĤT,HNT
(τ, λ̂(τ))

∥∥∥ ≤ sup
λ∈A

∥∥∥UT,HNT
(λ, r)rt=F̂t−H′

NT
Ft

∥∥∥+ 2T−1/2
T∑

t=1

‖F̂t −H ′
NTFt‖ = oP (1)

because T−1/2
∑T

t=1 ‖F̂t −H ′
NTFt‖ ≤

√
T max1≤t≤T ‖F̂t −H ′

NTFt‖ = oP (1).

Proof of Theorem 2: first note that For any D ∈ D, we have the following expansion for each
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τ ∈ T :

S∞,D(τ, λ̂(τ)) = S∞,D(τ,D−1λ(τ)) +D′E[fX(λ∗(τ)′D′Ft|Ft)FtF
′
t ]D · [λ̂(τ)−D−1λ(τ)],

where λ∗(τ) is on the line connecting D−1λ(τ) and λ̂(τ) for each τ . Then, by uniform continuity of

fX(x|f) and uniform convergence of λ̂(τ) for H−1
NTλ(τ), we have

S∞,HNT
(τ, λ̂(τ)) = H ′

NT [J(λ(τ)) + oP (1)]HNT · [λ̂(τ) −H−1
NTλ(τ)] (25)

uniformly over T since S∞,D(τ,D−1λ(τ)) = 0.

Second, by definition we have:

√
TS∞,HNT

(τ, λ̂(τ)) =
√
T ŜT (τ, λ̂(τ)) −GT (τ, λ̂(τ), HNT ) + ĤT,HNT

(τ, λ̂(τ)), (26)

and combining Lemmas 1, 4, 6, (25), and (26) gives:

[H ′
0J(λ(τ))H0 + oP (1)] ·

√
T [λ̂(τ)−H−1

NTλ(τ)] = −GT (τ,H
−1
0 λ(τ), H0) + oP (1) (27)

uniformly in τ ∈ T . It then follows from (27) and Assumption 2(iii) that10

sup
τ∈T

‖ −GT (τ,H
−1
0 λ(τ), H0) + oP (1)‖ ≥ (ρ∗ + oP (1)) · sup

τ∈T

√
T‖λ̂(τ) −H−1

NTλ(τ)‖. (28)

Since the mapping τ 7→ λ(τ) is continuous due to implicit function theorem and Assumption 1(v)11, the

process VT (·) = GT (·, H−1
0 λ(·), H0) is ρ̃-stochastic equicontinuous with

ρ̃[τ1, τ2] = ρ[(τ1, λ(τ1)
′H ′

0, H0), (τ2, λ(τ2)
′H ′

0, H0)]

where ρ is defined in Lemma 3. Then by stochastic equicontinuity and a standard multivariate central

limit theorem, we have

VT (τ) =
1√
T

T∑

t=1

ϕτ (Xt − λ(τ)′Ft)H
′
0Ft

converges weakly to a zero mean Gaussian process V∞(τ) defined by its covariance matrix

Σ(τ1, τ2) = E[V∞(τ1)V∞(τ2)] = [min(τ1, τ2)− τ1τ2]H
′
0ΣFH0.

It then follows from (28) that supτ∈T
√
T ‖λ̂(τ)−H−1

NTλ(τ)‖ is OP (1), and thus from (27) we can conclude

that [H ′
0J(λ(·)H0] ·

√
T [λ̂(·)−H−1

NTλ(·)] converges weakly to V∞(·) in ℓ∞(T ). The desired result follows

by noting that H ′
0ΣFH0 = Ir. �

10For a symmetric positive definite matrix A and a non-zero vector a, ‖Aa‖ =
√
a′2a =

√

(a/‖a‖)′2(a/‖a‖) ·
‖a‖ ≥

√

ρ(A2)‖a‖ = ρ(A)‖a‖, where ρ(·) is the minimum eigenvalue.
11See Angrist et al (2006).
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A.3 Proof of Theorem 3

Proof of Theorem 3: Again, for simplicity, we suppress the subscript i. Recall that:

JH0(λ(τ)) = E
[
fX|F (λ(τ)

′Ft|Ft)H
′
0FtF

′
tH0

]

and

Ĵ(λ̂(τ)) =
1

2hT · T
T∑

t=1

{
1{|Xt − λ̂(τ)′F̂t| ≤ hT }F̂tF̂

′
t

}
.

Define

J(λ̂(τ)) =
1

2hT · T

T∑

t=1

{
1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }H ′
0FtF

′
tH0

}
.

It can be shown that supτ∈T ‖JH0(λ(τ)) − J(λ̂(τ))‖ = oP (1) by Assumptions 1(v) and E‖Ft‖4 < ∞,

uniform consistency of λ̂(τ) for H−1
0 λ(τ), Lemma 1(ii), and the definition of density functions12. Thus,

the uniform consistency of Ĵ(λ̂(τ)) follows from

sup
τ∈T

‖Ĵ(λ̂(τ)) − J(λ̂(τ))‖ = oP (1). (29)

To prove (29), note that

2hT
(
Ĵ(λ̂(τ)) − J(λ̂(τ))

)

=
1

T

T∑

t=1

{
1{|Xt − λ̂(τ)′F̂t| ≤ hT }(F̂tF̂

′
t −H ′

0FtF
′
tH0)

}

︸ ︷︷ ︸
I

+
1

T

T∑

t=1

[
1{|Xt − λ̂(τ)′F̂t| ≤ hT } − 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]
H ′

0FtF
′
tH0

︸ ︷︷ ︸
II

.

12The details of the proof is similar to that of equation (A.8) in Angrist et al (2006) and is therefore omitted.
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First, we have

‖I‖ ≤ 1

T

T∑

t=1

‖F̂tF̂
′
t −H ′

0FtF
′
tH0‖ ≤ 1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖H ′

0Ft‖+
1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖F̂t‖

≤ 2‖H0‖ ·
1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖Ft‖+

1

T

T∑

t=1

‖F̂t −H ′
0Ft‖2

≤ 2‖H0‖ ·
1

T

T∑

t=1

‖F̂t −H ′
NTFt‖‖Ft‖+ 2‖H0‖ · ‖HNT −H0‖ ·

1

T

T∑

t=1

‖Ft‖2 + 2
1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2

+2‖HNT −H0‖2 ·
1

T

T∑

t=1

‖Ft‖2

≤ 2‖H0‖

√√√√ 1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2

√√√√ 1

T

T∑

t=1

‖Ft‖2 +OP (‖HNT −H0‖) +OP (C
−1
NT )

=

√√√√ 1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2 · OP (1) + ‖HNT −H0‖ · OP (1),

then by Assumptions 2(ii), 3 and Lemma 1(i) we have ‖I‖/hT = oP (1) uniformly in τ .

Second, define Gij,t as the ith row and jth column of H ′
0FtF

′
tH0, and we first consider the case i = j

such that Gi,t = Gii,t ≥ 0. It is easy to see that:

IIi,i =
1

T

T∑

t=1

[
1{|Xt − λ̂(τ)′F̂t| ≤ hT } − 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]
Gi,t

≤ 1

T

T∑

t=1

[
1
{
|Xt − λ̂(τ)′H ′

NTFt| ≤ hT + k̂T (τ)
}
− 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]
Gi,t.

Where k̂T (τ) = max1≤t≤T |λ̂(τ)′(F̂t −H ′
NTFt)|. Now consider the following empirical process

CT (θ, h) =
1√
T

T∑

t=1

{
1{|Xt − θ′Ft| ≤ h} ·Gi,t − E[1{|Xt − θ′Ft| ≤ h} ·Gi,t]

}
.

The right hand side of the last inequality is equal to

T−1/2
[
CT (θ, h)|h=hT+k̂T (τ),θ=HNT λ̂(τ) − CT (λ, h)|h=hT ,θ=HNT λ̂(τ)

]

︸ ︷︷ ︸
III

+ E
[
1{|Xt − θ′Ft| ≤ h} ·Gi,t

]
h=hT+k̂T (τ),θ=HNT λ̂(τ)

− E
[
1{|Xt − θ′Ft| ≤ h} ·Gi,t

]
h=hT ,θ=HNT λ̂(τ)︸ ︷︷ ︸

IV

.

Since CT (θ, h) is stochastic equicontinous when E‖Ft‖4 < ∞ by Theorem 1 of Andrews (1994), it then

follows that ‖III‖ is oP (T
−1/2) uniformly in τ given that

sup
τ∈T

|k̂T (τ)| ≤ sup
λ∈A

‖λ‖ · max
1≤t≤T

‖F̂t −H ′
NTFt‖ = oP (1). (30)
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Next, note that

E
[
1{|Xt − θ′Ft| ≤ h1} ·Gi,t

]
− E

[
1{|Xt − θ′Ft| ≤ h2} ·Gi,t

]

= E

[(
fX|F (θ

′Ft + h∗)(h1 − h2)− fX|F (θ
′Ft + h∗∗)(h1 − h2)

)
Gi,t

]
,

where h∗ and h∗∗ are points on the lines connecting h1 and h2. We then have ‖IV ‖ ≤ 2f̄ ·E‖Gi,t‖·|k̂T (τ)| =
oP (T

−1/2) uniformly in τ by (30). Combining the above results and Assumption 3, (29) follows directly

and thus the first statement in Theorem 3 is proved. The second statement follows trivially by Slutsky’s

Theorem and the fact that 1
T

∑T
t=1 ‖F̂tF̂

′
t −H ′

0FtF
′
tH0‖ = oP (1). �

A.4 Proof of Theorem 4

To simplify the notations, we suppress the dependence of various object on k, τ , i.e., F̂ = F̂ (k, τ),

F 0
t = F 0

t (τ), l(z) = lτ (z), etc. Write Zit = Xit − λ′iFt, Uit = Z0
it = Xit − λ0

′

i F
0
t , and Ẑit = Xit − λ̂′iF̂t.

Finally, for a matrix C, ‖C‖S denotes the spectral norm of C: ‖C‖S =
√
ρ1(C′C), where ρ1 denote the

largest eigenvalue. Note that we have ‖C‖S ≤ ‖C‖ ≤
√
rank(C)‖C‖S .

Using Taylor expansion we have

l(Ẑit)− l(Uit) = ∂zl(Uit)(Ẑit −Uit) + 0.5∂z2 l(Z̃it)(Ẑit −Uit)
2 ≥ ∂zl(Uit)(Ẑit −Uit) + 0.5b∗NT (Ẑit −Uit)

2,

where Z̃it is between Ẑit and Uit and the inequality follows from Assumption 4. Then for k ≥ r

0 ≥
N∑

i=1

T∑

t=1

l(Ẑit)−
N∑

i=1

T∑

t=1

l(Uit) ≥ 0.5b∗NT

N∑

i=1

T∑

t=1

[
(Ẑit − Uit)

2 + 2∂zl(Uit)/b
∗
NT (Ẑit − Uit)

]
.

Note that
∑N

i=1

∑T
t=1(Ẑit−Uit)

2 =
∑N

i=1

∑T
t=1(λ̂

′
iF̂t−λ0

′

i F
0
t )

2 = ‖F̂ Λ̂′−F 0Λ0′‖2, and∑N
i=1

∑T
t=1 ∂zl(Uit)(Ẑit−

Uit) = Tr[∂zl∗(F 0Λ0′−F̂ Λ̂′)′], where ∂zl is a T×N matrix with elements ∂zl(Uit). So the above inequality

can be written as

‖F̂ Λ̂′ − F 0Λ0′‖2 + 2/b∗NT · Tr[∂zl ∗ (F 0Λ0′ − F̂ Λ̂′)′] ≤ 0. (31)

Since for any T ×N matrices A,B

|Tr[AB′]| ≤ rank(AB′)‖AB′‖S ≤ (min{rank(A), rank(B)})‖A‖S‖B‖S,

we have ∣∣Tr[∂zl ∗ (F 0Λ0′ − F̂ Λ̂′)′]
∣∣ ≤ (r + k) · ‖∂zl‖S · ‖F 0Λ0′ − F̂ Λ̂′‖S

because rank(F 0Λ0′ − F̂ Λ̂′) ≤ rank(F 0Λ0′) + rank(F̂ Λ̂′) ≤ r + k. First, it is easy to see that ‖F 0Λ0′ −
F̂ Λ̂′‖S ≤

√
r + k‖F 0Λ0′ − F̂ Λ̂′‖. Second, ‖∂zl‖S ≤ ‖∂zl − E[∂zl]‖S + ‖E[∂zl]‖S. Similar to Lemma D.6

of Fernandez-Val and Weidner (2015), we can show that

‖∂zl − E[∂zl]‖S = OP (
√
NT · T−5/8) +OP (

√
NT · T−1/2N−1/8) +OP (

√
NT · T−1/8N−1/4).
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Moreover, ‖E[∂zl]‖S ≤
√
NT ·max1≤t≤T |E[∂zl(Uit)]|, and it follows from standard proof for kernel density

estimators that max1≤t≤T |E[∂zl(Uit)]| = O(cdNT ). Thus, from Assumption 4(v) we have 1/b∗NT ·‖∂zl‖S =

oP (
√
NT ). Plugging all the above results into (29) gives

(NT )−1‖F̂ Λ̂′ − F 0Λ0′‖2 + oP (1) · (NT )−1/2‖F̂ Λ̂′ − F 0Λ0′‖ ≤ 0,

which implies

(NT )−1/2‖F̂ Λ̂′ − F 0Λ0′‖ = oP (1). (32)

Finally, define MF̂ = I − F̂ (F̂ ′F̂ )−1F̂ ′, we have

‖MF̂ (F̂ Λ̂
′ − F 0Λ0′)‖ ≤

√
rank

(
MF̂ (F̂ Λ̂

′ − F 0Λ0′)
)
· ‖MF̂ ‖S · ‖(F̂ Λ̂′ − F 0Λ0′)‖S .

Since rank(MF̂ ) = T − k, rank(F̂ Λ̂′ − F 0Λ0′) ≤ r + k, ‖MF̂‖S = 1 and ‖(F̂ Λ̂′ − F 0Λ0′)‖S ≤ ‖(F̂ Λ̂′ −
F 0Λ0′)‖, it follows that

(NT )−1/2‖MF̂F
0Λ0′‖ =

√
Tr
[F 0′MF̂F

0

T
· Λ

0′Λ0

N

]
= oP (1).

Because N−1Λ0′Λ0 converges to a full rank matrix by Assumption 4, then

∥∥∥
F 0′MF̂F

0

T

∥∥∥ = oP (1),

which implies

F 0′F 0/T − (F 0′ F̂ /T )(F̂ ′F 0/T ) = oP (1).

Consequently,

‖PF̂−PF 0‖2 = Tr[PF̂ ]+Tr[PF 0 ]−2Tr[PF̂ ·PF 0 ] = (k−r)+Tr
[
(F 0′F 0/T )−1

(
F 0′F 0/T−(F 0′F̂ /T )(F̂ ′F 0/T )

)]
,

which is equal to k − r + oP (1) since F
0′F 0/T converges to a positive definite matrix by Assumption 4.

The proof is then complete by setting k = r. �
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Figure 1: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function
of N (0, 1) for τ = 0.1.
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Figure 2: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.25.
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Figure 3: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.5.
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Figure 4: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.75.
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Figure 5: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.9.
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Figure 6: Common stock returns: estimated quantile factor loading processes for the constant

(left) and F̂t (right).
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Figure 7: Mutual fund returns: estimated quantile factor loading processes for the constant

(left) and F̂t (right).
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Figure 8: FF portfolios: estimated quantile factor loading processes for the constant (upper

left), F̂1t (upper right), F̂2t (lower right), and F̂3t (lower right),.
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Figure 9: R2 of regressing F̂PC on F̂QR (red) and regressing a constant factor on F̂QR (blue)

for τ = 0.1, 0.15, . . . , 0.9. Upper left: simulated dataset from a location-shift model; upper

right: stock returns; lower left: mutual fund returns; lower right: FF portfolios.
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